TR#90-004

An Overview of Yy and YyonX

— A CLOS based Window Tool Kit and its Implementation —

Technical Report No. 90-004

Masayuki Ida*, Keisuke Tanaka!,
Takashi Kosaka!, and Yukio Ohta$

Computer Science Research Laboratory

Information Science Research Center

Aoyama Gakuin University
Address: 4-4-25 Shibuya, Shibuya-ku, Tokyo Japan 150

Feburary 25, 1991

* ida@csrl.aoyama.ac.jp

f keisuke@csrl.aoyama.ac.jp
¥ kosaka@csrl.aoyama.ac.jp
§ yohta@csrl.aoyama.ac.jp

Preface

This report consists of three parts: Part I is the paper for Yy and YyonX. The early
version of it was appeared in the proceedings of Europal’90 held at Cambridge UK, pp
245 - 252 (March 1990). Part II is a quick introduction for ¥y and YyonX. Part III has
two sections. One is the contents of YyonX version 1.2 release note which was set to the
anonymous FTP machine named ftpQcsrl.aoyama.ac.jp. The other is the example of
the Yy application. A source code for ’grapher’ and its explanation are included.

Masayuki Ida is the project leader/designer and the principal author of the documents.
Keisuke Tanaka is the principal author of Yy-server. Takashi Kosaka is the principal author
of Yy-client. Other contributors of Yy-client source codes are Yukio Ohta and Masayuki Ida.
Symbolics specific extensions are contributed by Eiji Shiota. Yukio Ohta played the role for
debugging, application development, and image/animation features. The basic documents
for image/animation features were written by Yukio Ohta.

With the Cooperation of The Yy Research Group of the year 1990

Members:

Masayuki Ida (Aoyama Gakuin University),
Keisuke Tanaka (Aoyama Gakuin University),
Takashi Kosaka (Aoyama Gakuin University / CSK Corp.),
Yukio Ohta (Aoyama Gakuin University / CEC Ltd.),
Katsuhiko Yuura (Hitachi Ltd.),

Eiji Shiota (Nihon Symbolics Corp.),
Haruyuki Kawabe (Nihon Unisys Ltd.),
Atsushi Atarashi (NEC Corp.),

Noritoshi Rokujo (Fujitsu Ltd.),

Mamoru Sato (Telmatique International Research Lab.)

— No Migration but Co-existence —

Contents

-

9

Yy and YyonX
Background 1 : Needs for a Window System in Common Lisp
Background 2 : CLOS and Object Oriented Approach
Analysis of Requirement Issues
The Design of Yy Window Tool Kit as a Conclusion of the above Analysis

YyonX as an Implementation of Yy Window Tool Kit
5.1 The Server-Client Model of YyonX
5.2 Running Environment L.

Characteristic concepts of YyonX

6.1 Meta Coordinate system
6.2 Output Recording and its Dynamic Control, Presentation
6.3 Functionality level which is equivalent to Common Windows
6.4 Input Editor and Multi-National Features
6.5 Distribution of the Loads

Primitive Classes
7.1 Positionand Region L.
7.2 Active-Region,

7.3 Stream
7.4 World, Viewport and Page
7.5 Stipple . . . L L

7.6 Class managementin YyWS

Window Stuffs

8.1 The Structure and the Operations for Window
8.2 Window Creation and Drawing
83 Icon,

Pop up Menu Operations

10 To use YyonX

11 Development Status

1

-3

00 ~3 ~1 =3

0]

10
10
12

Z

12

L

12

12

13

15

II Quick Introduction

1

2

©

What is Yy

What is YyonX 7

21 Overview.l
2.2 Server-Client Model Implementation of Yy Three Layers
2.3 Yy-serverand Yy-client
2.4 Yy Protocol connects Yy-client and Yy-server

Mailing List and FTP ?

Major Components and Classes of Yy
Window Structure

Three ways for window toolkit implementation
Distributed Window Toolkit Concept of Yy
Why Yy is good: FIH#E» S HFH

Yy project steps

IIT Appendix

1

Release Note for YyonXver.1.2 dated 1990/11/05
LI summary L
L2 files. o

Example: Grapher
21 Overview.

i1

16
17

17
17
17
18
18

18
19
19
19
20
21

21

23

— No Muigration but Co-ezistence —

Part 1

Yy and YyonX

Abstract

Yy is a portable window tool kit on top of Common Lisp. Yy was originated in the needs
for a common window system.

Yy is outlined as 1) a three level layered model; YYAPI (application interface), YYWS
(window system) and NWSI (Native window system interface). 2) a window tool kit or UIMS
on top of other general window system: Yy is not a competitive new window system. 3) a
CLOS oriented system for both internal architecture and user interface.) a presentation
system and an output recording facility.

YyonX is an implementation of Yy on X-window. The pilot of YyonX is already working.

It uses a server/client model. The protocol is defined for communication belween a server
and a client. Yy-server is a X-client for NWSI and low level stuffs of YyWS. Yy-client is a
X-client for high level stuffs of YYWS and YYAPI. In the paper the design of basic classes

and generic functions for Yy are also introduced.

1 Background 1 : Needs for a Window System in
Common Lisp

There are several Window Systems and UIMS for various Common Lisp implementations.
But they have different functionalities. With this reason, though the portability of Common
Lisp is proven, lots of interactive and/or graphical applications can not be ported to different
implementations easily.

From 1984 on, there have been several Common Lisp based standardization efforts in-
cluding window systems. In the beginning, the Common Windows of Intellicorp was one of
the candidate for standard but was not adopted. At that time, Symbolics Lisp machine did
provide the Dynamic Window which features the presentation system. Common Windows
itself grew and several dialects of it were introduced.

We made surveys and got a sketch as follows:

1) Trial to integrate several existing window systems into one is required. It should be
independent from any existing windows but should have a bridge from them.

2) Consultation with the current technology is required. At least, X-window and it’s
friends, Common Windows, Genera, and PC-based windows should be investigated.

3) Public acceptance of the superiority of Dynamic Windows feature should be checked.

4) Good environment needs large memory. Is it affordable 7 Say, a full function program-
ming environment may occupy 20 M bytes or more.

5) As a workstation, much more functionality on Japanese character handling in every

text handling is required.

2 Background 2 : CLOS and Object Oriented Ap-
proach

Recently it is quite common to integrate a windowing stuffs using object oriented idea. This
trend has a firm technical background. Smalltalk is one example. In the Lisp world, Flavors
is used as a kernel technology for Symbolics Genera Window system.

Recent development of CLOS (Common Lisp Object System), and its adoption as a part
of X3J13 Common Lisp, place Common Lisp among the family of object oriented languages.
Since CLOS (chapter 1 and 2) was established in 1988, there are not so much experience
reported yet.

Lots of existing window systems for Common Lisp lack of object oriented approach since
they were born before CLOS was invented. To CLOSify a portable window system is a

must.

3 Analysis of Requirement Issues

Issue 1. Single Process or Multi Process

B> discussions: Related questions are whether each window is assigned an independent
process or is assigned to a window of native window system or no.
P> conclusions:
1) Place a root window at initialization. Each window is a child of it.
2) Each window can be assigned a process.
3) Keyboard and Mouse events should be correctly and promptly handled.
4) ?Pure Multi Process” is not needed. (Each window is not needed to be independently

executed)

Issue 2. Object-Oriented Style

B> discussions: CLOS is a must from the background requirement.
B> conclusion:
1) User interface and window handling should be CLOS based both.
2) Window can be dynamically defined.
3) Try to evaluate the CLOS power. Try to check whether Meta Object Protocol give us a

solution or not.
4) Migration path from other object oriented windowing tools is needed.

Issue 3. What is the Displayed Output.

> discussions: We discussed about what is the major advantage of Genera window system.
One thing to prove is whether presentation system is affordable. In Genera, output is
recorded as much memory as exists. (user can clear the history freely). Is infinite recording
really necessary considering the space consumption and redisplay speed. Should all the
object be mouse sensitive items? Context dependent mouse sensitivity is affordable or no.
P> conclusions:

1) Must install output recording mechanism. Should provide a constant which has the
maximum numbers of lines/items. (we all agree with the output recording feature is useful
though it is heavy. need some purging mechanism.)

2) Presentation type is very important. Prepare the facility to get user defined presentation
type. A new definition using CLOS named presentation class is introduced.

3) Sensitivity control considering the mouse speed should be needed.

Issue 4. Font and Multi National Character Presentation

B> discussions: Japanese characters should be handled. Can display several fonts in the
window or no. Two things to consider are, a case for multi-font strings and a case for
alignment / pitch control of displayed characters with variable fonts.

P> conclusion:
1) Provide multi font ability, though font itself is implementation dependent. The mecha-
nism for it can be standardized.
2) Must consider the provision for dynamic adjustment of displayed characters with various

fonts.

Issue 5. Widgets or Accessories

B> discussions: Lots of window systems have lots of widgets/gadgets and independent styles.
User friendliness comes from a uniformity of operations.

B> conclusion:
1) Too much consideration for style guiding is not needed.

2) Coordination with Existing Styles or the styles of native window systems is needed.

Issue 6. Input Editor

P> discussions: We discussed about the needs for input front-end processor (in a broader
sense), Input Editing and Japanese character input mechanism as an example. There exist
several Japanese character front-ends. Wnn, egg, or commercial front-end package, should
co-exist with our new window at least with flexibility.

B> conclusion: There must be a common way to access the stream internal buffer to

alternate the character already input to that input stream.

Issue 7. Graphics Functions

B> discussions: Provide rich functionality ? 3D model is needed ? Color handling is needed
i
B> conclusion: The Lisp window system we are thinking doesn’t provide high level graphic

tools, but a typical level ones. Must provide color capability.

Issue 8. Implementation Model

P> discussions: Is network oriented implementation needed ?
B> conclusion: We don’t need to specify the model details, since the target machines have

much variety.

Issue 9. A New Window System or a Tool Kit on Top of other
Windows

> discussions: Creating a new window system is attractive solution for the above. On the
other hand, if we start to develop a new window system from scratch, we might need to
develop every codes which should cope with the same functionality as other windows will
have in every minutes.
We want to share the progress of window technology as a user of other window systems.
B> conclusion: We will design and provide a window tool kit or user interface management

system on top of various general purpose window systems.

4 The Design of vy window 1001 kit as a Conclusion of the
above Analysis

Yy Window Tool Kit is the goal of our analysis and is an output of our research works. As
a summary, Yy is a CLOS based window tool kit with our scheme of output recording. We
design the Yy as a layered tool kit with three levels; NWSI, Yy WS, and YyAPI.

5

C Application Software >

b

YYAPI: YY Application Program Interface

v 1
YYWS : YY Window System
i 1

NWSI : Native Window System Interface Module

F

h

<T\I;tive Window SystD

Figure 1: Yy Layered Model

NWSI: Native Window System Interface Module

YYWS: Yy window system

YYAPI: Yy Application Program Interface

Figure 1 shows the model. NWSI depends on a native window system. YyWS is a native
window independent window system and manages all the window objects. The interface
between Yy WS and NWSI is defined to be independent from various underlying window
systems as possible. YyAPI (Ida, 1989) is an Application Program Interface and is used by

the users.

5 YyonX as an Implementation of vy window Tool Kit

5.1 The Server-Client Model of YyonX

YyonX is a Yy Window Tool Kit on top of X-window, and is implemented as a pilot.

The three layers of Yy Window Tool Kit are implemented by server-client model shown in
Fig.2. Yy-serveris a server for Yy Window Tool Kit . Yy-client is a client. All the window
operations are done by the cooperation of these two process.

Yy-server has two parts; The device dependent part and the device independent part.
The device dependent part is a NWSI for X-window. The device independent part is a
kernel of Yy WS.

Yy-client has two parts; the application part of Yy WS and the YYAPL

Yy-server and Yy-client are implemented as X-clients. Then, they can be loaded on
separate machines on the network. There is Yy protocol defined in (YY Project, 1989).

YYAPI

I I Yy-client

YYWS

[[Yy-server

NWSI

Figure 2: Implementation of Yy with a server-client model

5.2 Running Environment

To run YyonX the following requirements should be satisfied.
1) Full Common Lisp, 2) X window R11, 3) CLOS implementation (as a pilot implemen-
tation, use PCL)

6 Characteristic concepts of YyonX

6.1 Meta Coordinate system

The coordinate system of X window has the origin at the top-left corner. While, many
graphics systems have the origin at the bottom-left corner. To provide a flexibility on
selecting the coordinate system in application software, user can choose which origin is
suitable at the time of window creation. Since this feature uses the inheritance switching,

all the selections are done at the initialization stage, there is no overhead on run time.

6.2 Output Recording and its Dynamic Control, Presentation

YyonX has an output recording and a presentation system. The basic components of pre-
sentation system are implemented as CLOS classes. Our presentation system is simpler
than Symbolics’ one. There is no implicit inheritance. The maximum number of recorded
objects is controlled by a special constant.

Presentation system provides a mechanism to accept an output recorded object on the
screen rather than typing the same thing. Since Yy Window Tool Kit has a mouse-still
concept at the kernel level and is used to trigger an inspection procedure asynchronously,

placing a mouse to a candidate for a certain short period triggers to check the class and

place a wire rectangle around it if it is a successful candidate. If it is the user’s choice,

clicking it accepts it as an object to input.

6.3 Functionality level which is equivalent to Common Windows

As many feasible drawing primitives as possible will be provided. The functionality level of

YyonX application programmer interface is arranged as an equivalent to Common Windows.

6.4 Input Editor and Multi-National Features

One of the problem is which font is assumed to display multi-national characters. As for
japanese characters, there are several ways to provide japanese character fonts. The font
set for YyonX is selectable.

As for Japanese text input front-end, YyonX can switch between a custom made front-end
and a Wnn Jserver.

Mini buffer is provided for input editing.

As for character font manipulation, character data type of Common Lisp has an attribute

for it, and we will follow the update compiled by X3J13.

6.5 Distribution of the Loads

Server /Client model enables a distribution of the CPU and memory loads into two machines.
Fig.3 shows a case for three machines’ co-operation. Machine A and Machine B communi-
cates with X-protocol. Machine B and Machine C communicates with Yy -protocol. With
this configuration, actual application is supposed to be on machine C, and Japanese input
front-end which sometimes needs heavy loads on CPU and memory can be separated from
actual application on C.

Yy -protocol uses 4 byte unit packets to communicate. It includes all the functions with
compact representation. Currently we have 48 instructions and three types. Intermittent
synchronization feature enables asynchronous operations of the both sides. For minimum
case, only 12 bytes are necessary to command. Yy protocol is designed to reduce the network

traflic without degrading the functionality.

7 Primitive Classes

7.1 Position and Region

Position and Region are the most primitive classes in YyonX . Position is an object for a

position in XY coordinates. Region is an object for a rectangular area.

8

-~ X-Protocol —_— Yy-Protocol —_—

X-Server Yy-server Yy-client

Machine A Machine B Machine C

Figure 3: A Maximum Case for Yy Execution Environment

Region has six slots logically; :top, :bottom, :left, :width, :height, and :right.
Region can be handled with LBRT (left-bottom-right-top) concept or LBWH (left-bottom-
width-height) concept as user likes it.

7.2 Active-Region

Active-region is mouse-sensitive region. Several mouse-methods like enter-region, exit-
region, are provided.
This active-region mechanism is completely independent and different from presentation.

With active-region, user may define arbitrary rectangle.

7.3 Stream

Input and output with ¥y Window Tool Kit are through the streams. The implementation
is done with CLOS, and is an extension of stream type conforming David Gray’s proposal
to X3J13.

The primary streams are a graphic-stream and its two sub classes named window-stream
and bitmap-stream.

On the other hand, event-stream is provided to support the handling of asynchronous

input events. Mouse cursor movement, button clicking information, event status, and key-

board interruption are passed via event-stream.

7.4 World, Viewport and Page

The region which is a subject to display is called a world. The part of world which is

appeared on the screen is called viewport. Page is for a fixed width world.

7.5 Stipple

The target of bitmap-stream is called stipple. Object can be transferred between stipple

and world.

7.6 Class management in YyWS

In YyWS, all the windows, window components and presented outputs belong to classes.
These classes have several multiple inheritance relations.
Region class is used as one of the most primitive classes and is inherited by several window

classes. As its nature, class inheritance is used to provide a module/procedure library.

8 Window Stuffs

8.1 The Structure and the Operations for Window

Window is composed of title and frame. Title might not exist. Accessories can be attached
to title and frame. A frame is a viewport or a page. The edge of frame can have a width
and is called border. Frame supports scrolling. Viewport scrolling is possible for top-
bottom and left-right. Page scrolling is only possible only for top-bottom. Fig.4 shows the
relation between world, viewport and window. Coordinate system indicator is for the meta
coordinate system. The indicator of Fig.4 example shows the origin is the left-bottom.
- Window class definition has slots to describe parent relationship and sibling relationship.
The root is a root window.

Window has a rectanglar area and is composed of title-bar, border, scroll bar, coordinate
system indicator area, and frame. Viewport or page is mapped to frame.

Both graphic drawing and text display are permitted on viewport. Top-bottom and left-
right scrolling are allowed on viewport.

On the otherhand, Left-right scrolling is not permitted for page. The usage of page is
assumed as interaction buffer like a lisp listener or a emacs editor buffer which can be defined
as a fixed width roll paper. To achieve high speed display on page, graphic drawing on page

is not considered.

10

Title Bar

’_ /‘ Viewport

—

Border

«——Scroll Bar

t‘.

B

Coordinate System Indica,tgqj‘;

v
H

Figure 4:

World, Viewport and Window

11

8.2 Window Creation and Drawing

Window class has a slot to indicate whether the window is visible or no. This value is
determined at creation.

The size of window in a screen can be determined by user. The width and height of a
frame are determined at creation. The default size of a world is initially assigned to the
same value as its viewport. The default width of a border is 1 dot. The width of title bar is
the same as window width. The height of title bar depends on the height of fonts for title
characters.

Whether title, scroll bar and coordinate system indicator appear or no can be controlled.
Most of the controlling parameters stored in the slots of window instance are dynamically
changeable.

On the initial start up of YyonX , a root window is created and displayed. a guide window
is then appeared as shown in Fig. 5. The root window and the guide window have no title

bar, scroll bar, and coordinate system indicator displayed.

8.3 Icon

Icon is a display symbol which means a window is dormant. The window which is displayed

as an icon is drawable. But the contents are not displayed.

8.4 Drawing to a Window

Drawing with drawing primitive is done through a graphic stream object. If the window
stream class, which is a subclass of the graphic stream, is used, drawing is done to a world.
If the bitmap stream class, which is another subclass of the graphics stream, is used, drawing
is done to a stipple. Graphic primitives like drawing a line or a circle, and text displaying
primitives are provided. Common Lisp standard input/output primitives can direct data to
the window stream in YyonX .

Drawing to a window is to add an additional ’drawing instance’ to a slot of the world

instance. It means Yy WS has no bit plane which corresponds to each window.

9 Pop up Menu Operations

Window creation invokes the set up of accessories by default. The default accessory is a
pop up menu for mouse right button. With this pop up menu, window operation can be

selected.

12

For windows other than the root, Pressing a mouse button at the title bar or border triggers
to display a pop up menu. This menu offers a choice among the operations corresponding
to each menu items. The pop up menu for the root window is on its frame. This menu has
a same functionality as the above pop up menu, but an selecting a window operation added.
The following is the list of methods on pop up menu.

Move method: This method moves the position of a window.

Reshape method: This method changes the size of a window. The size of each compo-
nents of a window is changed but still kept displayed.

Expose method: This method places a window on top the window occlusion stack. The
window is displayed as the top and the whole contents of it are displayed.

Bury method: This method places a window on the bottom of the window occlusion
stack. The window is displayed as the bottom. The part which is placed under other
windows is not visible.

Flush method: This method removes a window instance and several objects which are
owned by it. These window instances are disappeared from screen.

Clear method: This method clears the contents of a window and the world which is
connected to the frame.

Shrink method: This method removes a window from the screen and creates and displays
an icon instead.

Expand method: This method removes an icon from the screen and displays the corre-
sponding window. The window still has the same attribute as it has before. The window is

displayed at the proper place, keeping its sibling relation.

10 To use YyonX

YyonX is started by Initialize-yy command. This makes a root window displayed. A
root window is a window of X window. So every X window handling is applied to the root
window. Fig. 5 shows an example. Multiple worlds can be handled in one root window.
Multiple root window can be invoked at the same time. They are assigned different processes.
The communication between them should be explicitly directed by the user.

A root window always have a guide window at the bottom. A guide window is used by
input editor, system warning/guiding message, Japanese text input front-end and so on. A
Lisp listener window is automatically prepared. On calling editor, GnuEmacs is invoked
with the user’s normal initialization.

Scroll bar and standard popup menu are provided for each window. For viewport frame,
bars are appeared on the left and the bottom. For page frame, bar on the left is appeared.
Standard popup menu contains primitive operations like Shrink (Expand), Move, Reshape,

13

7W‘Mndowi1'dbl t'

Y Lisp Liztensr (Pase Mode)

> (bounce *demo-windowi* 300)

NIL

> (drawing-text *demo-window2* "Hello world.”)
1L

> (drawing-text *demo-window2* “how do you do?”)

'Y_DEMO-WINDOW2 (Vertical Direction)

IL

> (terpri *demo-window2*)

INIL

> (drawing-text *demo-window2* “§

40P NoR ©p MOU P (Jok O] |aH

7 DEMD-WINDOWS ¢Horizontal Direction)

PRI AT

A root window can hold arbitrary numbers of windows inside. This example displays
four windows. One Lisp listener window is automatically appeared.

A root window always have a guide window at the bottom. The guide window is used
by input editor, system warning/guiding message, Japanese text input front-end and
$O on.

The mark appeared in the left-bottom of each subwindow must be T or B for
YyonX version 1. T indicates the origin of the axis is the left-top, while B
indicates the origin is the left-bottom.

Figure 5: An example display of YyonX

14

Clear, Expose, Bury. Furthermore, root window is given a menu of special operations to

handle whole window.

11 Development Status

The development of YyonX started on April 1989. On October 1989, the prototype started
to work.

We are evaluating the server-client model of us. With the server-client model, YyonX
splits a Lisp application into two. It enables the reduction of CPU load and memory load of
one machine. Application software can fit with smaller machines than ’all-in-one’ window
tool kit.

Acknowledgement

The main framework of this research was born in the discussions under the 1988 Jeida
Common Lisp Committee Secretariat meetings. The authors would like to express their
gratitude to all the members of JCLC.

Also thanks are due to the IFAI of Japan, ANSI X3J13 committee members, Dr. Richard
Gabriel (Lucid Inc./ Stanford Univ.), Mr. Fritz Kunze (Franz Inc.), and Mr. Bill York

(International Lisp Associates) for their assistances.

References

1. M.Ida: “YYAPI External Specification Manual” 1989 Dec.

2. M.Ida, T.Kosaka, K.Tanaka: “Design of YyonX ” Proc. IPSJ annual conf., march 1990
3. M.Ida, et.al. : “A Requirement Analysis for A Portable Window System” ibid.

4. T. Kosaka, et.al. : “Design of YYWS for YYonX” ibid.

5. K. Tanaka, et.al. : “Design of YY-server for YYonX” ibid.

6. Yy Project : “Yy Protocol Specification Manual” 1989 Dec.

15

— No Migration but Co-existence —

Part 11
Quick Introduction

16

1 What is Yy

e Yy is a network oriented window toolkit for Common Lisp.

o Yy has three layers: YYAPI, YYWS, and NWSL YYAPIis an application program
interface. YYWSis a window toolkit kernel. NWSIis a native window system interface.
With the replacing NWSI ability, a dynamic portability of application software over the
existing window systems is achieved.

e YyonX is an implementation of Yy for X-window.

¢ Yy research is carried by CSRL Aoyama Gakuin University. Prof. Masayuki Ida is the
leader and the principal designer of the Yy .

2 What is YyonX ?

2.1 Overview

¢ YyonX is a pilot implementation of Yy for X-window, and is developed at Aoyama
Gakuin Unversity.

We call it a distributed window toolkit.
CLOS oriented portable window tool kit.
It uses a Server / Client model.

Yy-server is a X-client for low level stuffs.

Yy-client is a X-client for an application part and API.

There is Yy -Protocol for the communication between Yy-server and Yy-client.

Yy-Protocol enables the co-operation of Yy-server and Yy-client over TCP /IP, and has
a highly compressed format.

For example, you may use a SUN3/60 X-server, a SUN4/260 Yy-server, and a Yy-client
on a different machine to execute YyonX based application.

Tested X-windows are X11R4, X11R3.

Color image processing and animation features.

2.2 Server-Client Model Implementation of Yy Three Layers

YYAPI

1 Yy-client
YYWS
. # IYy-server
NWSI

17

2.3 Yy-server and Yy-client

e Yy-serveris executable on the machines which can understand X-protocol as a X-Client,

and IPC sockets. Usually Yy-server fit on most of UN*X machines.

— All the Actual Images are Stored and Managed in the Yy-server (Yy-client has no
bitmaps)
— The objects of Yy-server are called TERRITORY

o Yy-client is executable on the machines which have a ’full’ Common Lisp and have a

facility for IPC sockets over TCP/IP.

Yy-client has a sub process to dispatch events from Yy-server
o Yy-server and Yy-client communicate with Yy-protocol

2.4 Yy Protocol connects Yy-client and Yy-server

The characteristics of the Yy Protocol are:

e Currently 71 Commands

e Packet: 4 bytes X (2 + Command Arguments)

e Implemented on UNIX Socket Interface, which is facility for Inter Process Communica-
tion through TCP

e Three types of Commands:
Notification (server — client. 3),
Command (client — server without requiring ack. 46),
Instruction (client — server requiring ack/answer 22)

e Transfer Rate: On SUN-4/280, 0.55msec/byte is achieved (40 byte packet transfer.
avarage of 100 time experimentation).

e Intermittent Synchronization of Commands

3 Mailing List and FTP ?

There is an international mailing list for YyonX.
The name is yyonx@csrl.aoyama.ac. jp
To request, send E-mail to
yyonx-request@csrl.aoyama.ac.jp
YyonX sources and documents are ready for anonymous FTP at ftp.csrl.aoyama.ac.jp

under Yy directory.

18

(You can make anonymous FTP to ftp.csrl. aoyama.ac.jp from USA, Europe and other
Internet nodes.)

Sources are copyrighted but freely used acknowledging the notices on the top of each
source code. Documents are placed in public domain, though we may update the contents

time to time.

4 Major Components and Classes of Yy

e Position and Region

The logical slots for regions are : Top, :Bottom, :Left, :Right, :Width, and :Height.
User can choose LBRT or LBWH as a set of physical slots.

® Presentation classes (and Output Recording)

e World, Viewport and Page

¢ Stream Object: Based on the amendment proposal to X3J13. graphic-stream, its

subclass window-stream and bitmap-stream are the major streams introduced.

Event-streamis provided to handle asynchronous input events.
Active-region

Window and Window-stream:

Stipple: Stipple is a bitmap for bitmap-stream.

Color-table

Input Editor

Window Structure

ot

multiple numbers of subwindows are displayed in a root window.

multiple worlds are displayed in a root window.

a guide window is at the bottom of a root window.

Window consits of title and frame.

Title can be omitted. Title and frame can have accesaries.

Frame is viewport or page. border of a frame has width. frame supports scrolling.

dormant window becomes an icon.

horizontal direction and vertical direction are selectable upon string text output.

6 Three ways for window toolkit implementation

1. as a part of Kernel: functions are included in the OS. Ex. Lisp machines.

19

2. as a library: functions are attached to the application. Most of the window toolkits
are implemented with this model. Disadvantage is on the increase of memory size and
CPU loads, though heavy equipment bless users with easy to use functionalities.

3. as a server/client cooperation: The case for YyonX.
Application program is a client of a window. Window handling is separated as a server.

It enables a ccoperation of different vendors’ server and client.

7 Distributed Window Toolkit Concept of Yy

<+X-Protocol*<Yy-Protocob
| | |
X-Server Yy-serve Yy-client

Machine A Machine B Machine C

SHEoy—7 27—y ay (WS) kk3FEEWVERZ LT,
IGHAREFTFINBE WS, V4 VY Py LDa—Ff v R 72— ZARHEfTE 5B WS, X-server 25
EHrxhd WS 2hllict i 3,

— Co-operation on Heterogeneous Environment —

X - server Yy - server | Yy - client
UNIX — —
X terminal (or PC) | UNIX Lisp machines like Symbolics
X terminal (or PC) | UNIX Host Computers
))
User Application Software
(Client) (Lisp application server)
Other Processes Yy - Client
AN ard
Yy - Server
Tl
User
(X-server)

20

8 Why Yy is good: FlffFE» 6 HF5

¢ Because Yy supports the “No Migration but Co-existence” Principle.

® No need to port your applications from Symbolics to other workstations.

® No need to rewrite user interface on porting.

¢ No need to combine several functional modules into one executable image.

e Your Propriety is gurded while can make co-operation with other software.

9 Yy project steps

step

1

~ O Ut W W N

1989 Apr. - 1989 Sep.
1989 Oct. - 1990 Mar.
1990 Apr. -

1990 June

1990 July

1990 Sept.

1991 Feb.

(1991 March F45€)

Investigation & Design

Prototype

version 1.0 (SCL xfIir)

FTP announce, mailing list starts
version 1.1 (Allegro XJJis)

version 1.2 (Symbolics Genera i)
version 1.3 (imaging and animation)
version 2.0

21

— No Migration but Co-existence —

Part III
Appendix

22

1 Release Note for YyonXver.1.2 dated 1990/11/05

1.1 summary

YyonXversion 1.2 is now ready for anonymous FTP at ftp.csrl.aoyama.ac.jp under Yy directory.

1.2 files

There are several files. (Sizes for documents may change, sorry.)

Nov 6 12:34 ReleaseNote.1.2
3823 Nov 6 12:34 WHAT.IS.YYonX
1569764 Nov 6 12:55 client.1.2.tar.Z
220155 Nov 6 12:55 client.1.2.tar.Z.uu
6146 Nov 6 12:55 demo.1.2.tar.Z
8501 Nov 6 12:55 demo.1.2.tar.Z.uu
247807 Nov 6 12:55 doc.1.2.tar.Z
341456 Nov 6 12:55 doc.1.2.tar.Z.uu
1033 Nov 6 12:34 how-to-install-yy-client
663 Nov 6 12:34 how-to-install-yy-server
124737 Nov 6 12:55 server.1.2.tar.Z
171893 Nov 6 12:55 server.1.2.tar.Z.uu

1. ReleaseNote.1.2 is this file. (plain text file)

2. WHAT.IS.YYonX contains the explanation of YyonX. (plain text file) Please read this
file before unpack the source tar files.

3. client.1.2.tar.Z(.uu) contains the compressed tar file for yyclient directory.

4. server.1.2.tar.Z(.uu) contains the compressed tar file for yyserver directory.

5. doc.1.2.tar.Z(.uu) contains the compressed tar file for yydoc directory. There are Yy-
protol documents and YYAPI documents. (YYAPI documents will be updated shortly.)

6.denuxLQiaLZ(uu)conhﬁnstheconqnamedtarfﬂeforyydenx)dhecuny.(Cunenﬂx
only one file is there.)

7. how-to-install-yy-client (plain text file) contains the direction to install yy-client.

8. how-to-install-yy-server (plain text file) contains the direction to install yy-server.

Sources are copyrighted but freely used acknowledging the notices on the top of each
source code. Documents are placed in public domain, though we may update the contents

time to time.

23

1.3 Features of Version 1.2

Major features of 1.2 version are:

1.

4.
5.

Yy-client is tested with Lucid 4.0 (Lucid CLOS), Allegro 3.1.13 (PCL), Allegro 3.1.17
(International version, PCL), and Symbolics Genera 8.0 (Symbolics CLOS). Yy-server
is mainly tested on Sun4 SunOS4.1 and X11R4. (And is working on several other UN*X
and/or X11R3 like titan.)

. Updated Yy-server to cope with new features.
. Updated Yy-Protocol (between Yy-server and Yy-client) specification with the intro-

duction of the page mode (for text oriented interaction) and viewport mode (for high
speed graphic outputs).

Event processing, popup menu and several primitives are refined.

Many bug fixes and improvements of 1.11alpha.

1.4 Current Plan

Further schedule of development:

g W

. Refinement of YYAPI specification. (Yes, we had not made enthusiastic efforts on

improving API specification yet, since we like to adopt standards for external interfaces
and had not enough time to take care of outlooks.)

More enhancements on Graphics, animation area.

UI tools enhancements.

Versions for mainframe Common Lisps are under development.

UK researchers told us that the Eulisp is running on top of Yy. We will welcome such
experimentation.

Attempt to start the discussion with CLIM to have an unified external specification.
(Yyand CLIM made a joint statement for it on 1990/02/14.)

Continuous trial to obtain much higher performance on the communication between

Yy-client process and Yy-server process.

24

2 Example: Grapher

2.1 Overview

Grapher which was originally included in the book Lisp Lore: 2 nd edition by Bromely and
Lamson, and was adopted to the materials for comparative study of several ob ject oriented
languages making the parts of Common Lisp Object System by Masayuki Ida et.al.

It is an interactive software to display and manipulate the nodes and arcs.

YY Window Toel Kit

Add Are
Create
Grapher Command: Delete Arc
Click Arc or Type Delete Node
Input lable:ARCY Mave
Grapher Comnand: Reset
Click Arc or Type Set Lable Node
Input lable:ARC-Y Set Lable Arc
Grapher Command:

25

2.2 Source Codes

;;; Grapher on YYonX

; ;3 nodes—and-arcs.lisp
(defvar *all-the-nodes* nil)

(defvar *next-node-index* 0
"Unique index assigned to each node.")

(defvar *next-arc-index* O
"Unique index assigned to each node.")

(defclass node ()

((arcs :initform nil :accessor node-arcs)
(xpos :accessor node-xpos

:initarg :xpos)
(ypos :accessor node-ypos

:initarg :ypos)
(radius :initform :needs-calculation
:accessor node-radius)
(label :initform nil

:accessor node-label)
(shape :initform :circle

:accessor node-shape)
(unique :initform (incf *next-node-index*)
:accessor node-unique))

)

(defmethod initialize-instance :after ((node node) &rest initargs)
(declare (ignore initargs))
(push node *all-the-nodes*))

(defmethod print-object ((node node) stream)
(let ((name (or (node-label node)
(format nil "Unnamed node “D" (node-unique node)))))
(write-string name stream)))
(defmacro map-over-nodes ((node-var) &body body)
‘(dolist (,node-var *all-the-nodes*)

,@body))

(defmethod (setf node-label) :after (new-value (node node))
(setf (node-radius node) :needs-calculation))

(defmethod move-node ((node node) new-xpos new-ypos)
(with-slots (xpos ypos) node

26

(setf xpos new-xpos
ypos new-ypos)))

(defmethod delete-self ((node node))
(dolist (arc (node-arcs node))
(delete-self arc))
(setf *all-the-nodes* (delete node *all-the-nodes*)))

(defmethod present-self ((node node) window)
(calculate-radius node window)
(with-slots (xpos ypos radius label) node
(draw-circle-xy window xpos ypos radius)
(draw-string-xy window (or label " ") (- xpos radius) ypos)

))

(defmethod calculate-radius ((node node) window)
(with-slots (radius label) node
(vhen (and (stringp label)
(zerop (length label)))
(setf label nil))
(when (eq radius :needs-calculation)
(setf radius (ceiling (string-width window (or label " ")) 2)))
radius))

(defclass arc ()
((mark :initform nil
raccessor arc-mark)
{nodel :accessor arc-nodel
:initarg :nodel)
(node2 :accessor arc-node2
:initarg :node2)
(position1 :initform (make-position)
taccessor positioni)
(position2 :initform (make-position)
:accessor position2)
(label :initform nil
raccessor arc-label)

))

{defmethod add-arc ((node node) (arc arc))
(incf *next-arc-indexx)
(with-slots (arcs) node
(push arc arcs)))

(defmethod remove-arc ((node node) {arc arc))
(with-slots (arcs) node
(setf arcs (delete arc arcs))))

(defmethod initialize-instance :after ((arc arc) &rest initargs)

(declare (ignore initargs))
(with-slots (nodel node2) arc

27

(add-arc nodel arc)
(add-arc node2 arc)))

(defmethod print-object ({arc arc) stream)

(with-slots (nodel node2) arc
(format stream "~a <-~> ~a" nodel node2)))

(defmacro map-over-arcs ((arc-var) &body body)
(et ((mark-var (make-symbol "MARK"))
(node-var (make-symbol "NODE")))
‘“(let ((,mark-var (list nil)))
(dolist (,node-var *all-the-nodes*)
(dolist (,arc-var (node-arcs ,node-var))
(unless (eq (arc-mark ,arc-var) ,mark-var)

,@body
(setf (arc-mark ,arc-var) ,mark-var)))))))

(defmethod delete-self ((arc arc))
(with-slots (nodel node2) arc
(remove-arc nodel arc)
(remove~arc node2 arc)))

(defmethod present-self ((arc arc) window)
(with-slots (nodel node2 positioni position2) arc
(multiple-value-bind (x1 y1 x2 y2)
(find-edges-of-nodes (node-radius nodel)
(node-xpos nodel) (node-ypos nodel)
(node-radius node2)
{node-xpos node2) (node-ypos node2))

(setf (position-x positioni) (min x1 x2)
(position~x position2) (max x1 x2)
(position-y positioni) (min yi y2)
(position-y position2) (max y1 y2))

(draw-line-xy window x1 yi x2 y2))))

(defmethod present-self :after ((arc arc) window)
(with-slots (label positionl position2) arc
(let* ((width (string-width window (or label " ")))
(x (- (+ (position-x positioni)
(ceiling (/ (- (position-x position2)
(position-x positionl)) 2)))
(ceiling (/ width 2)))) .
(y (+(position-y positioni)
(ceiling (/ (- (position-y position2)
(position-y positioni)) 2))))

(height (font-kanji-height (stream-font window)))
(c-base (font-kanji-base-line (stream-font window))))

(with-graphic-state ((color graphic-color) (filled filled-type)) window

(setf color *white-color*
filled *FillSolid*)

28

(draw-region-xy window (- x 1) (- y c-base) (+ width 2) height))
g y 8

(draw-region-xy window (- x 1) (- y c-base) (+ width 2) height)
(draw-string-xy window (or label " ") x y)

)))

(defun find-edges-of-nodes (rl xposl yposl r2 xpos2 ypos2)
(let* ((dx (- xpos2 xposi))
(dy (- ypos2 yposi))
(length (isqrt (+ (* dx dx) (* dy dy)))))
(values (+ xposi (ceiling (* dx ri) length))
(+ yposi (ceiling (* dy r1) length))
(- xpos2 (floor (* dx r2) length))
(- ypos2 (floor (* dy r2) length)))))

;;3Follwings are implementation dependent functions
;33 YY implementation
;33 Coded by T.kosaka

(defun string-width (window string)
"returns the width (pixels) of string"
(font-string-length (stream-font window) string)

)

533 Window stream

(defvar *grapher-window* nil)
(defvar *command-window* nil)
(defvar *menu-window* nil)

;33 Command status
(defvar *command-status* nil)

;3; Menu List

(defvar *menu-list* ’((add-arc-command "Add Arc" "Add Arc")
(create-node-command '"Create" "Create Node')
(delete-arc-command "Delete Arc" "Delete " "Arc')
(delete-node-command "Delete Node" "Delete " "Node')
(move-node~command "Move" "Move')
(reset~command "Reset' "Reset")
(set-lable-command "Set Lable Node" "Set Lable " "Node")
(set-lable-arc-command "Set Lable Arc" "Set Lable " "Arc")))

;3 Redisplay all nodes and arcs

(defun redisplay-all ()
(clear-window~stream *grapher-window*)
(map-over-nodes (node) (present-self node *grapher-window#))
(map~-over-arcs (arc) (present-self arc *grapher-window*)))

;;; selection node from mouse position
(defun select-node (x y)

29

(map-over-nodes (node)
(if (> (node-radius node)
(sqrt (+ (expt (- x (node-xpos node)) 2)
(expt (- y (node-ypos node)) 2))))
{(return-from select-node node))))

;33 Selection ARC from XY
(defun select-arc-xy (x y)
(map-over-arcs (arc)
(with-slots (positionl position2) arc
(when (and (< (position-x positioni) x)
(> (position-x position2) x)
(< (position-y positioni) y)
(> (position-y position2) y))
(let ((katamukil (ceiling (* (/ (- (position-y position2)
(position-y positioni))
(- (position-x position2)
(position-x positioni1)))
10)))
(katamuki2 (ceiling (* (/ (- y (position-y positioni1))
(- x (position-x position1)))
103)))
(if (> 10 (- katamukil katamuki2))
(return-from select-arc-xy arc))
)
NN

;3 Selection ARC from two nodes
(defmethod select-arc ((nodeil node) (node2 node))
(map-over-arcs (arc)
(if (or (and (eq nodel (arc-nodel arc)) (eq node2 (arc-node2 arc)))
(and (eq nodel (arc-node2 arc)) (eq node2 (arc-nodel arc))))
(return-from select-arc arc))))

HH Setting command status macro
(defmacro with-command-status ((status) &body body)
(let ((old-status (gentemp))
(ret-val (gentemp)))
‘(let ((,old-status ,*command-status*)
(,ret-val nil))

(with-slots (input-string) ,*command-window*
{setf input-string nil))

(setf *command-status* ,status
,ret-val (progn ,Qbody)
command-status ,old-status)

,ret-val)))

;3 ; Command functions
(defun create-node-command ()

30

(let ((x nil) (y nil))
(multiple-value-setq (x y)
(catch ’position (get-xy-position x y)))
(new-write-message (format nil "Create node ~a “a" x y))
(present-self (make-instance ’node :xpos x :ypos y) *grapher-window*)))

(defun get-one-node (message)
(1et ((node nil))
(new-write-message (format nil "Click “a node or Type " message))
(with-command-status (:find-node)
(setf node
(catch ’node
(loop
(let ((d-node (eval (read *command-window*))))
(if (eq (class-name (class-of d-node)) ’node)
(return d-node))))
)))
node))

(defun get-one-arc ()
(et ((arc nil))
(new-write-message "Click Arc or Type ")
(with-command-status (:find-arc)
(setf arc
(catch ’arc
(1loop
(let ((d-arc (eval (read *command-window*))))
(if (eq (class-name (class-of d-node)) ’arc)
(return d-arc))))
)

arc))

(defun get-xy-position (x y)
(et ((xx nil)
(yy nil))
(with-command-status (:position-define)
(when (or (null x) (not (integerp x)))

;3 Ask x position

(select-window *command-window*)

(new-write-message "Input Node X Position or Mouse click : ")

(setf xx (read *command-window*))

(when (or (null y) (mot (integerp y)))

(new-write-message "Input Node Y Position or Mouse click : ")
(setf yy (read *command-window#))
)
))
(values xx yy)
))

31

(defun add-arc-command (&rest arg)
(let ((nodel nil)
(node2 nil))

(unless (zerop *next-node-indexx*)
(setf nodel (get-one-node "Nol ")
node2 (get-one-node "No2 "))

(present-self (make-instance ’arc :nodel nodel :node2 node2)
grapher-window)))

)

(defun delete-arc-command (&rest arg)
(let ((nodet nil)
(node2 nil))
(unless (zerop *next-arc-indexx*)
(setf nodel (get-one-node '"Nol ")
node2 (get-one-node "No2 "))
(delete-self (select-arc nodel node2))
(redisplay-all))))

(defun delete-node-command (&rest arg)
(let ({node nil))
(setf node (get-one-node " "))
(delete-self mnode)
(redisplay~all)))

(defun move-node~command (&optiomal (x nil) (y nil))
(let ((node nil))
(setf node (get-one-node " "))
(setf *select-node* node)
{enable-event *grapher-window*)

(multiple-value-setq (x y)
(catch ’position
(get-xy-position x y)))

(move-node node x y)
(disnable-event *grapher-window* *mouse-movex)
(redisplay-all)))

(defun reset-command (&rest arg)
(clear-window-stream *grapher-window*)
(clear-window-stream *command-window)
(setf *all-the-nodes* nil

next-node—-index 0O

nex—arc-index 0))

(defun set-lable-command (&optional (string nil) &rest state)

32

(let ((node nil))
(unless (zerop *next-node-index*)
(terpri *command-window#)
(setf node (get-one-node " "))
(new-write-message "Input lable: ")
(setf string (read-line *command-window*))
(setf (node-label node) string)
(redisplay-all)))

(defun set-lable-arc-command ()
(let ((arc nil)

(string "))
(unless (zerop *next-arc-index*)
(setf arc (get-one-arc))
(new-write-message "Input lable: ")
(select-window *command-window*)
(setf string (read-line *command-windowx))
(setf (arc-label arc) string)
(redisplay-all)))

;335 Make Menu window
(defun make-menu-window ()
(let* ((width (font-string-length *default-font* "Set Lable Node "))
(window (make-window-stream :width width
theight (* (font-kanji-height *default-font*) 10)
:left 500 :bottom 500
:title-string "Menu Window"
:title~bar~visible nil
:vertical-scroll-visible nil
:horizontal-scroll-visible nil
:coordinate-area~visible nil))
(y 0
(a-region nil))

(dolist (item *menu-list#)
(setf a-region (make-active-region :left O
:bottom y
:width width
theight (font-kanji-height *default-font*)
:parent window))

(setf (get (active-region-symbol a-region) ’command-name)
(car item)
(buttoni-method a-region) ’menu-command
(get ’menu-command ’single-process) t)

(incf y (font-kanji-height *default-font*))

(write-string (second item) window)
(terpri window)

33

(force-output window))
(setf *menu-window* window)))

(defmethod menu-command ((a-region active-region) state)
(throw ’command
(values (get (active-region-symbol a-region) ’command-name))))

;;; Make Grapher window and Command window
(defun make-grapher-window ()
(let ((window (make-window-stream :left 10 :bottom 10
:width 600 :height 500
:title-string "Grapher Window™))
(c-window (make-window-stream :left 10 :bottom 500
:width 490 :height
(* (font-kanji-height *default-font*) 10)
:title-string "Message Window"
M)
(set-window-method window
’right-button-down
tevent-mask *mouse-right-1%)

(set-window-method window
’move-node-mouse
:event-mask *mouse-movek)

(setf (get ’right-button-down ’single-process) t
(get ’move-node-mouse ’single-process) t
command-window c-window
grapher-window window)

(disnable-event window *mouse-movex)

))

;53 Button method for *grapher-window*
(defmethod right-button-down ((window window-stream) state)

{case *command-status*
(:position-define
;33 Set integer to window stream read buffer
(throw ’position (values (mouse-state-x-position state)
(mouse-state~y-position state))))

(:find-node
(let ((node nil))
(if (eq (class-name (class-of (setf node
(select-node (mouse-state-x-position state)
(mouse-state-y-position state))))) ’node)
(throw ’node (values node)))
»
(:find-arc
(let ((arc nil))

34

(if (eq (class-name

(class-of (setf arc
(select-arc-xy (mouse-state-x-position state)
(mouse-state-y-position state)))))

’arc)

(throw ’arc (values arc)))))

(t
)

;3 move-node-method
(defmethod move-node-mouse ((window window-stream) state)
(let ((select-node *select-node*))
(with-slots (arcs) select-node
(with-graphic-state ((op graphic-operation)) window
(setf op *GXOR*)
(present-self select-node *grapher-window*)
(dolist (s-arc arcs)
(present-self s-arc *grapher-windowx))
(setf
(node-xpos select-node) (mouse-state-x-position state)
(node-ypos select-node) (mouse-state-y-position state))

(present-self select-node *grapher-window*)
(dolist (s-arc arcs)

(present-self s-arc *grapher-window*)

D))

))

;33 initialize-grapher
(defun initialize-grapher ()

;5 ; Makeing grapher window

(make-grapher-window)

(make-menu-window)

(setf *all-the-nodes* nil
next-node-index 0
nex—arc-index 0)

(start-grapher))

;13 Start grapher
(defun start-grapher ()
(select-window *command-window#)
(let ((exec-command nil))
(clear-window-stream *command-window*)
(loop
(write-message "Grapher Command: ')
(setf exec-command

(catch °’command
(get-command-list)))

(apply exec-—command nil)
(terpri *command-window*)

35

)

;i get—command-list

(defun get-command-list ()
(let ((item nil)

(real-menu nil)

(ret nil)

{new-menu-list *menu-list*))

(setf item (string-capitalize (string (read *command-window*)}))

(do ((menu (car new-menu-list) (setf new-menu-list (cdr new-menu-list)
menu {car new-menu-list))))
((null new-menu-list))
(vhen (string= item (third menu) :endl (length item)
:end2 (length item))
(setf real-menu menu)
(return)))

(clear-string-region *command-window* item)
(write-message (nth 2 real-menu))

(when (stringp (fourth real-menu))
(setf item (string-capitalize (string (read *command-window#))))
(dolist (menu new-menu-list)
(when (string= item (fourth menu) :endi (length item)
:end2 (length item))
(setf real-menu menu)
(return))))

(clear-string-region *command-window* item)
(write-message (fourth real-menu))

(values (car real-menu))))

;33 scrolling in same window
(defmethod stream-force-output :before
((stream window-stream))
(vhen (equal stream *command-window#)
(when (> (+ (stream-cursor-y-position stream)
(font-kanji~height *default-font*))
(region-height (frame-region stream)))
(clear-window-stream stream))

))

;;; Write Message to command window

(defun write-message (message)
(write-string message *command-window#*)
(force-output *command-window#*))

36

(defun new-write-message (message)
(terpri *command-window*)
(write-string message *command-window#)
(force-output *command-window*))

;33 claear region in window stream
(defmethod clear-string-region ((stream graphic-stream) item)
(let ((x (stream-cursor-x-position stream))
(y (- (stream-cursor-y-position stream)
(font-kanji-base-line (stream-font stream))))
(w (font-string-length (stream-font stream) item))
(b (font-kanji-height (stream-font stream))))

(with-graphic-state ((color graphic-color) (filled filled-type)) stream
(setf color *white-color*

filled *FillSolid*)
(draw-region-xy stream x y w h))))

37

