Ei <l 'P0 Tedn'cel pape i
ey Y

An Overview of Yy and YyonX
— A CLOS based Window Tool Kit and

its Implementation —

Masayuki Ida, Takashi Kosaka, Keisuke Tanaka
Computer Science Research Lab.
Aoyama Gakuin University
4-4-25 Shibuya, Shibuya-ku, Tokyo JAPAN 150

With the Cooperation of The Yy Research Group
Members:

Masayuki Ida (Aoyama Gakuin University),
Takashi Kosaka (Aoyama Gakuin University / CSK Corp.),
Keisuke Tanaka (Aoyama Gakuin University),
Katsuhiko Yuura (Hitachi Ltd.),

Eiji Shiota (Nihon Symbolics Corp.),
Haruyuki Kawabe (Nihon Unisys Ltd.),
Atsushi Atarashi (NEC Corp.),

Yukio Ohta (CEC Ltd.),

Noritoshi Rokujo (Fujitsu Ltd.)

Abstract

Yy is a portable window tool kit on top of Common Lisp. Yy was originated in the
needs for a common window system.

Yy is outlined as 1) a three level layered model; YYAPI (application interface),
YYWS (window system) and NWSI (Native window system interface). 2) a window
tool kit or UIMS on top of other general window system: Yy is not a competilive
new window system. 3) a CLOS oriented system for both internal architecture and
user interface. 4) a preseniation system and an output recording facility.

YyonX is an implementation of Yy on X-window. The pilot of YyonX is already
working. :

It uses a server/client model. The protocol is defined for communication between
a server and a client. Yy-server is a X-client for NWSI and low level stuffs of
YyWS. Yy-client is a X-client for high level stuffs of YyWS and YYAPIL In the

paper the design of basic classes and generic functions for Yy and its look and feel
are also introduced.

1 Background 1 : Needs for a Window System in Common Lisp

There are several Window Systems and UIMS for various Common Lisp
implementations. But they have different functionalities. With this reason,
though the portability of Common Lisp is proven, lots of interactive and/or
graphical applications can not be ported to different implementations easily.

From 1984 on, there have been several Common Lisp based standard-
ization efforts including window systems. In the beginning, the Common
Windows of Intellicorp was one of the candidate for standard but was not
adopted. At that time, Symbolics Lisp machine did provide the Dynamic
Window which features the presentation system. Common Windows itself
grew and several dialects of it were introduced.

We made surveys and got a sketch as follows:

1) Trial to integrate several existing window systems into one is required.
It should be independent from any existing windows but should have a bridge
from them.

2) Consultation with the current technology is required. At least, X-
window and it’s friends, Common Windows, Genera, and PC-based windows
should be investigated.

3) Public acceptance of the superiority of Dynamic Windows feature
should be checked.

4) Good environment needs large memory. Is it affordable ? Say, a full
function programming environment may occupy 20 M bytes or more.

5) As a workstation, much more functionality on Japanese character
handling in every text handling is required.

2 Background 2 : CLOS and Object Oriented Approach

Recently it is quite common to integrate a windowing stuffs using object
oriented idea. This trend has a firm technical background. Smalltalk is
one example. In the Lisp world, Flavors is used as a kernel technology for
Symbolics Genera Window system. o

Recent development of CLOS (Common Lisp Object System), and its
adoption as a part of X3J13 Common Lisp, place Common Lisp among the
family of object oriented languages. Since CLOS (chapter 1 and 2) was
established in 1988, there are not so much experience reported yet.

Lots of existing window systems for Common Lisp lack of object oriented

approach since they were born before CLOS was invented. To CLOSify a
portable window system is a must.

3 Analysis of Requirement Issues

Issue 1. Single Process or Multi Process

D discussions: Related questions are whether each window is assigned an

independent process or is assigned to a window of native window system or
no.

B> conclusions:
1) Place a root window at initialization. Each window is a child of it.
2) Each window can be assigned a process.
3) Keyboard and Mouse events should be correctly and promptly handled.

4) ”Pure Multi Process” is not needed. (Each window is not needed to be
independently executed)

Issue 2. Object-Oriented Style

> discussions: CLOS is a must from the background requirement.
> conclusion:
1) User interface and window handling should be CLOS based both.
2) Window can be dynamically defined.
3) Try to evaluate the CLOS power. Try to check whether Meta Object
Protocol give us a solution or not.

4) Migration path from other object oriented windowing tools is needed.

Issue 3. What is the Displayed Output.

> discussions: We discussed about what is the major advantage of Genera
window system. One thing to prove is whether presentation system is afford-
able. In Genera, output is recorded as much memory as exists. (user can
clear the history freely). Is infinite recording really necessary considering
the space consumption and redisplay speed. Should all the object be mouse
sensitive items? Context dependent mouse sensitivity is affordable or no
P> conclusions:

1) Must install output recording mechanism. Should provide a constant
which has the maximum numbers of lines/items. (we all agree with the
output recording feature is useful though it is heavy. need some purging
mechanism.)

2) Presentation type is very important. Prepare the facility to get user de-
fined presentation type. A new definition using CLOS named presentation
class is introduced.

3) Sensitivity control considering the mouse speed should be needed.

Issue 4. Font and Multi National Character Presentation

b discussions: Japanese characters should be handled. Can display several
fonts in the window or no. Two things to consider are, a case for multi-font

strings and a case for alignment / pitch control of displayed characters with
variable fonts.

B> conclusion:
1) Provide multi font ability, though font itself is implementation dependent.
The mechanism for it can be standardized.

2) Must consider the provision for dynamic adjustment of displayed charac-
ters with various fonts.

Issue 5. Widgets or Accessories

P discussions: Lots of window systems have lots of widgets/gadgets and

independent styles. User friendliness comes from a uniformity of operations.
P> conclusion:

1) Too much consideration for style guiding is not needed.

2) Coordination with Existing Styles or the styles of native window systems
is needed.

Issue 6. Input Editor

D> discussions: We discussed about the needs for input front-end processor
(in a broader sense), Input Editing and Japanese character input mechanism
as an example. There exist several Japanese character front-ends. Wan, egg,
or commercial front-end package, should co-exist with our new window at
least with flexibility.

> conclusion: There must be a common way to access the stream internal
buffer to alternate the character already input to that input stream.

Issue 7. Graphics Functions

D> discussions: Provide rich functionality ? 3D model is needed ? Color
handling is needed ?
> conclusion: The Lisp window system we are thinking doesn’t pro-

vide high level graphic tools, but a typical level ones. Must provide color
capability.

Issue 8. Implementation Model

D> discussions: Is network oriented implementation needed ?

> conclusion: We don’t need to specify the model details, since the target
machines have much variety.

Issue 9. A New Window System or a Tool Kit on Top of other Windows

D> discussions: Creating a new window system is attractive solution for the
above. On the other hand, if we start to develop a new window system from
scratch, we might need to develop every codes which should cope with the
same functionality as other windows will have in every minutes.

We want to share the progress of window technology as a user of other
window systems.

B conclusion: We will design and provide a window tool kit or user inter-
face management system on top of various general purpose window systems.

C Application Software>

p

3

YYAPI : YY Application Program Interface

v 1
YYWS : YY Window System
v 1

NWSI : Native Window System Interface Module

3

h

Q ative Window Syster_n>

Figure 1: Yy Layered Model

4 The Design of Yy Window Tool Kit as a Conclusion of the above
Analysis :

Yy Window Tool Kit is the goal of our analysis and is an output of our
research works. As a summary, Yy is a CLOS based window tool kit with
our scheme of output recording. We design the Yy as a layered tool kit with
three levels; NWSI, Yy WS, and YyAPL

NWSI: Native Window System Interface Module

YYWS: Yy window system

YYAPI: Yy Application Program Interface

Figure 1 shows the model. NWSI depends on a native window system.
YyWS is a native window independent window system and manages all the
window objects. The interface between Yy WS and NWSI is defined to be
independent from various underlying window systems as possible. YyAPI
(Ida, 1989) is an Application Program Interface and is used by the users.

5 YyonX as an Implementation of Yy Window Tool Kit

5.1 The Server-Client Model of YyonX

YyonX is a Yy Window Tool Kit on top of X-window, and is implemented
as a pilot.

The three layers of Yy Window Tool Kit are implemented by server-
client model shown in Fig.2. Yy-server is a server for Yy Window Tool Kit

. Yy-clientis a client. All the window operations are done by the cooperation
of these two process.

YYAPI

I Yy-client
YYWS ———

I Yy-server
NWSI

Figure 2: Implementation of Yy with a server-client model

Yy-server has two parts; The device dependent part and the device in-
dependent part. The device dependent part is a NWSI for X-window. The
device independent part is a kernel of YyWS.

Yy-client has two parts; the application part of Yy WS and the YYAPI.

Yy-server and Yy-client are implemented as X-clients. Then, they can be
loaded on separate machines on the network. There is Yy protocol defined
in (YY Project, 1989).

5.2 Running Environment

To run YyonX the following requirements should be satisfied.

1) Full Common Lisp, 2) X window R11, 3) CLOS implementation (as a
pilot implementation, use PCL)

6 Characteristic concepts of YyonX

6.1 Meta Coordinate system

The coordinate system of X window has the origin at the top-left corner.
While, many graphics systems have the origin at the bottom-left corner.
To provide a flexibility on selecting the coordinate system in application
software, user can choose which origin is suitable at the time of window
creation. Since this feature uses the inheritance switching, all the selections
are done at the initialization stage, there is no overhead on run time.

6.2 Output Recording and its Dynamic Control, Presentation

YyonX has an output recording and a presentation system. The basic com-
ponents of presentation system are implemented as CLOS classes. Our pre-
sentation system is simpler than Symbolics’ one. There is no implicit inher-
itance. The maximum number of recorded objects is controlled by a special
constant.

Presentation system provides a mechanism to accept an output recorded
object on the screen rather than typing the same thing. Since Yy Window
Tool Kit has a mouse-still concept at the kernel level and is used to trigger
an inspection procedure asynchronously, placing a mouse to a candidate for

e

a certain short period triggers to check the class and place a wire rectangle
around it if it is a successful candidate. If it is the user’s choice, clicking it
accepts it as an object to input.

6.3 Functionality level which is equivalent to Common Windows

As many feasible drawing primitives as possible will be provided. The func-

tionality level of YyonX application programmer interface is arranged as an
equivalent to Common Windows.

6.4 Input Editor and Multi-National Features

One of the problem is which font is assumed to display multi-national char-
acters. As for japanese characters, there are several ways to provide japanese
character fonts. The font set for YyonX is selectable.

As for Japanese text input front-end, YyonX can switch between a custom
made front-end and a Wnn Jserver.

Mini buffer is provided for input editing.
As for character font manipulation, character data type of Common Lisp
has an attribute for it, and we will follow the update compiled by X3J13.

6.5 Distribution of the Loads

Server/Client model enables a distribution of the CPU and memory loads
into two machines. Fig.3 shows a case for three machines’ co-operation.
Machine A and Machine B communicates with X-protocol. Machine B and
Machine C communicates with Yy -protocol. With this configuration, actual
application is supposed to be on machine C, and Japanese input front-end
which sometimes needs heavy loads on CPU and memory can be separated
from actual application on C.

Yy -protocol uses 4 byte unit packets to communicate. It includes all the
functions with compact representation. Currently we have 48 instructions
and three types. Intermittent synchronization feature enables asynchronous
operations of the both sides. For minimum case, only 12 bytes are necessary

to command. Yy protocol is designed to reduce the network traffic without
degrading the functionality.

7 Primitive Classes

7.1 Position and Region

Position and Region are the most primitive classes in YyonX . Position is an
object for a position in XY coordinates. Region is an object for a rectangular
area.

Region has six slots logically; :top, :bottom, left, :width, :height, and
right.

e

= X-Protocol +=Yy-Protocol+
| I [
X-Server . Yy-server] Yy-client

Machine A Machine B Machine C

Figure 3: A Maximum Case for Yy Execution Environment

Region can be handled with LBRT (left-bottom-right-top) concept or
LBWH (left-bottom-width-height) concept as user likes it.

7.2 Active-Region

Active-region is mouse-sensitive region. Several mouse-methods like enter-
region, exit-region, are provided.

This active-region mechanism is completely independent and different
from presentation. With active-region, user may define arbitrary rectangle.

7.3 Stream

Input and output with ¥y Window Tool Kit are through the streams. The
implementation is done with CLOS, and is an extension of stream type
conforming David Gray’s proposal to X3J13.
The primary streams are a graphic-stream and its two sub classes
named window-stream and bitmap-stream.
- On the other hand, event-stream is provided to support the handling of
asynchronous input events. Mouse cursor movement, button clicking infor-
mation, event status, and keyboard interruption are passed via event-stream.

7.4 World, Viewport and Page

The region which is a subject to display is called a world. The part of world

which is appeared on the screen is called viewport. Page is for a fixed width
world.

7.5 Stipple

The target of bitmap-stream is called stipple. Object can be transferred
between stipple and world.

Title Bar

/" Viewport

S

Border

e———Scroll Bar

Ll | | i

#1

Coordinate System Indicator
ES ’

B

— World

Figure 4: World, Viewport and Window

7.6 Class management in YyWS

In YyWS, all the windows, window components and presented outputs be-
long to classes. These classes have several multiple inheritance relations.
Region class is used as one of the most primitive classes and is inherited

by several window classes. As its nature, class inheritance is used to provide
a module/procedure library.

8 Window Stuffs

8.1 The Structure and the Operations for Window

Window is composed of title and frame. Title might not exist. Acces-
sories can be attached to title and frame. A frame is a viewport or a page.
The edge of frame can have a width and is called border. Frame supports
scrolling. Viewport scrolling is possible for top-bottom and left-right. Page
scrolling is only possible only for top-bottom. Fig.4 shows the relation be-
tween world, viewport and window. Coordinate system indicator is for the

meta coordinate system. The indicator of Fig.4 example shows the origin is
the left-bottom.

Window class definition has slots to describe parent relationship and sib-
ling relationship. The root is a root window.

Window has a rectanglar area and is composed of title-bar, border, scroll
bar, coordinate system indicator area, and frame. Viewport or page is
mapped to frame.

Both graphic drawing and text display are permitted on viewport. Top-
bottom and left-right scrolling are allowed on viewport.

On the otherhand, Left-right scrolling is not permitted for page. The
usage of page is assumed as interaction buffer like a lisp listener or a emacs
editor buffer which can be defined as a fixed width roll paper. To achieve
high speed display on page, graphic drawing on page is not considered.

8.2 Window Creation and Drawing

Window class has a slot to indicate whether the window is visible or no.
This value is determined at creation.

The size of window in a screen can be determined by user. The width
and height of a frame are determined at creation. The default size of a world
is initially assigned to the same value as its viewport. The default width of
a border is 1 dot. The width of title bar is the same as window width. The
height of title bar depends on the height of fonts for title characters.

Whether title, scroll bar and coordinate system indicator appear or no
can be controlled. Most of the controlling parameters stored in the slots of
window instance are dynamically changeable.

On the initial start up of YyonX , aroot window is created and displayed.
a guide window is then appeared as shown in Fig. 5. The root window
and the guide window have no title bar, scroll bar, and coordinate system
indicator displayed.

8.3 lcon

Icon is a display symbol which means a window is dormant. The window
which is displayed as an icon is drawable. But the contents are not displayed.

8.4 Drawing to a Window

Drawing with drawing primitive is done through a graphic stream object. If
the window stream class, which is a subclass of the graphic stream, is used,
drawing is done to a world. If the bitmap stream class, which is another
subclass of the graphics stream, is used, drawing is done to a stipple. Graphic
primitives like drawing a line or a circle, and text displaying primitives are
provided. Common Lisp standard input/output primitives can direct data
to the window stream in YyonX .

Drawing to a window is to add an additional *drawing instance’ to a slot

of the world instance. It means YyWS has no bit plane which corresponds
to each window.

9 Pop up Menu Operations

Window creation invokes the set up of accessories by default. The default
accessory is a pop up menu for mouse right button. With this pop up menu,
window operation can be selected.

For windows other than the root, Pressing a mouse button at the title
bar or border triggers to display a pop up menu. This menu offers a choice
among the operations corresponding to each menu items. The pop up menu
for the root window is on its frame. This menu has a same functionality as
the above pop up menu, but an selecting a window operation added. The
following is the list of methods on pop up menu.

Move method: This method moves the position of a window.

Reshape method: This method changes the size of a window. The size
of each components of a window is changed but still kept displayed.

Expose method: This method places a window on top the window
occlusion stack. The window is displayed as the top and the whole contents
of it are displayed.

Bury method: This method places a window on the bottom of the
window occlusion stack. The window is displayed as the bottom. The part
which is placed under other windows is not visible.

Flush method: This method removes a window instance and several
objects which are owned by it. These window instances are disappeared
from screen.

Clear method: This method clears the contents of a window and the
world which is connected to the frame.

Shrink method: This method removes a window from the screen and
creates and displays an icon instead.

Expand method: This method removes an icon from the screen and
displays the corresponding window. The window still has the same attribute

as it has before. The window is displayed at the proper place, keeping its
sibling relation.

10 To use YyonX

YyonX is started by Initialize-yy command. This makes a root window
displayed. A root window is a window of X window. So every X window
handling is applied to the root window. Fig. 5 shows an example. Multi-
ple worlds can be handled in one root window. Multiple root window can
be invoked at the same time. They are assigned different processes. The
communication between them should be explicitly directed by the user.

YY Window System for KCI.

SHERV K= Cs
Select to select window.
0

| B3 HE22Y English is variable w[ys (expose a)

D Y AL D Taadtad {2 aadtadla addéh Lore:

(Prototype)

Uridence Sestem Guide Mep

<Window 450x422 at (15,62) 9>

47741

[Y>a

E #<Window 450x422 at (15,62) 9>

cs

YY>(draw-circle-xy a 200 200 50 :brush-

M, width 10 :dashing ’ (5 5))

& 2 NIL

- - .

¢'l,"“\¢ YY>(draw-line-xy a 20 20 400 200 :brush

-width 20)
o= | NIL

YY>(bitblt *auto-icon:z 0 0 a 200 300)
NIL

— YY>|

Eal

A root window can hold arbitrary numbers of windows inside. This example displays four
windows. One Lisp listener window is automatically appeared.

A root window always have a guide window at the bottom. The guide window is used by
input editor, system warning/guiding message, Japanese text input front-end and so on.

Figure 5: An example display of YyonX

A root window always have a guide window at the bottom. A guide
window is used by input editor, system warning/guiding message, Japanese
text input front-end and so on. A Lisp listener window is automatically
prepared. On calling editor, GnuEmacs is invoked with the user’s normal
initialization.

Scroll bar and standard popup menu are provided for each window. For
viewport frame, bars are appeared on the left and the bottom. For page
frame, bar on the left is appeared. Standard popup menu contains primi-
tive operations like Shrink (Expand), Move, Reshape, Clear, Expose, Bury.

Furthermore, root window is given a menu of special operations to handle
whole window.

11 Development Status

The development of YyonX started on April 1989. On October 1989, the
prototype started to work.

We are evaluating the server-client model of us. With the server-client
model, YyonX splits a Lisp application into two. It enables the reduction
of CPU load and memory load of one machine. Application software can fit
with smaller machines than ’all-in-one’ window tool kit.

A(;knowledgement

The main framework of this research was born in the discussions under the
1988 Jeida Common Lisp Committee Secretariat meetings. The authors
would like to express their gratitude to all the members of JCLC.

Also thanks are due to the IFAI of Japan, ANSI X3J13 committee mem-
bers, Dr. Richard Gabriel (Lucid Inc./ Stanford Univ.), Mr. Fritz Kunze

(Franz Inc.), and Mr. Bill York (International Lisp Associates) for their
assistances.

References

1. M.Ida: “YYAPI External Specification Manual” 1989 Dec.

2. M.Ida, T.Kosaka, K.Tanaka: “Design of YyonX ” Proc. IPSJ annual
conf., march 1990

3. M.Ida, et.al. : “A Requirement Analysis for A Portable Window System”
ibid.

4. T. Kosaka, et.al. : “Design of YYWS for YYonX” ibid.

5. K. Tanaka, et.al. : “Design of YY-server for YYonX” ibid.

6. Yy Project : “Yy Protocol Specification Manual” 1989 Doc.

