
■○~7

助r''-i需給高畠二戸/読

An Overview of Yy and YyonX

- A C器os based Window TboI Kit and

its Implementation -
Masayuki Ida, Tahshi Kosah, Keisuke Tanah

Computer Science Research Lab.

Aoyama Gakuin University

4-4-25 Shibuya, Shibuya-ku, Tokyo JAPAN 150

With the Cooperation of The lY Research Group
Members :

Masayuki Ida (Aoyama Gakuin University),

Takashi Kosaka (Aoyama Gakuin University / CSK Cor°.),

Keisuke Tanaka (Aoyama Gakuin University),

Katsuhiko Yuura (Hitachi Ltd.),

Eiji Shiota (Nihon Symbolics Cor°.),

Haruyuki Kawabe (Nihon Unisys Ltd･),

Atsushi Atarashi (NEC Cor°.),

Yukio Ohta (CEC Ltd.),

Noritoshi Rokujo (Fujitsu Ltd.)

Abstract

Yy 2S a pOriabte w'ndow lootk2.i on lop ofConmon Lisp. Yy was originated in ike

needs for a common window system.

Yy is ouitined as 1) a lhne tevet layered model; YYAPI (appticalion ,'nlerface),

YYWS (Window syslen.) and NWSI (Native w'ndow syslenB interface). 2) a window

loot ke'l or UIMS on lop of other genenat Window syslem･'Yy is not a compele'iive
new Window syslem･ 3) a CLOS onenied syslen for both inlernat archileciur"nd

user inierface･ 4) a pTeSeniaiion system and an ouipui recording facitiiy.

YyonX e's an impternenlalion of Yy on X-window. The 〟,'tol of YyonX is already

work2'ng.

n uses a server/ctieni TnOdet. The prolocot is deSnedfor communication between

a server and a ct2'enl. Yy-sewer is a X-ctieni for NWSI and tow teuet sluCs of
YyWS･ Yy-ctieni is a X-ch.enl for high twel sluCs of YyWS and YYAPI. In lhe

paper lhe design Of base'c classes and generic functions for Yy and its took and feet
are also introduced.

I Background 1 : Needs hr a Window System ih Common Lisp

There are several Window Systems and UIMS br various Common Lisp

implementations･ But they have di範汀ent血nctionahties. With this reason,

though the portability of Common Lisp is proven, lots of interactive and/Or

graphical applications can not be ported to dinerent implementations easily.

 1 

Proc. Europal 90, pp245 - 252, March 1990



From 1984 on, there have been severd Common Lisp based standard-

ization e徹)Its including window systems. In the beginnlng, the Common

Windows of lntellicorp was one of the candidate 氏)I standard but was not

adopted. At that time, Symbolics Lisp machine did provide the Dynmic

Window which危atures the presentation system. Common Windows itself

grew and severd didects of it were introduced.
Ⅵ made surveys and got a sketch asめuows:

1) 冒rid to integrate several existing window systems into one is required.

It should be independent五〇m any existing windows but should have a bridge

紅em them.

2) Consultation with the current technology is required. At least, Ⅹ-

window and it'S統ends, Common Windows, Genera, and PC-based windows

should be investigated.

3) Public acceptance or the superiority or Dynamic Windows feature

should be checked.

4) Good enviroTment needs large memory･ Is it afrordable? Say, a full

mnction programmlng environment may occupy 20 M bytes ol more.

5) As a workstation, much more mnction址ty on Japanese ch紬aCter

handling ln every text handHng lS required.

2　Background 2 : CLOS and Object Oriented Approach

Recently it is quite common to integrate a windowing stu館uslng Object

oriented idea. This trend has a鉦m technical background. Smalltalk is

one example. In the Lisp world, Flavors is used as a kemel technologyめr

Symbolics Genera Window system.

Recent development of CLOS (Common Lisp Object System), and its

adoption as a part of X3J13 Common Lisp, place Common Lisp among the

hmily of object oriented languages. Since CLOS (chapter 1 and 2) was

established in 1988, there are not so much experience reported yet.

Lots of existing window systems lbr Common Lisp lack of object oriented

approach since they were bom before CLOS was invented. Tb CLOS的a

portable window system is a must.

3　Anaiysis of Requirement Issues

Issue 1. Sing一e Process or Muiti Process

ら discussions: Related questions are whether each window is asslgned an

independent process or is assigned to a window of native window system or

nO.

b conclusions:

1) Place a root window at initidization. Each window is a child of it.

2) Each window can be assigned a process.

3) Keyboard md Mouse events should be correctly md promptly handled.

 2 

Proc. Europal 90, pp245 - 252, March 1990



4) ''Pure Multi Process''is not needed. (Each window is not needed to be

independently executed)

Issue 2, Object一〇riented Sty一e

p discussions: C器os is a must五〇m the background requirement.

p conclusion:

1) User interhce and window handling should be C器os based both.

2) Window can be dynamically de允ned.

3) Try to evduate the C器os power. Try to check whether Meta Object

Protocol give us a solution or not.

4) Migration path五〇m other object oriented windowing tools is needed.

Issue 3. What is the Disp一ayed Output.

> discussions: We discussed about what is the major advantage of Genera
window system. One thing to prove is whether presentation system is a鯖brd-

able･ In Genera, output is recorded as much memory as exists. (user can

clear the history freely)･ Is innnite recording really necessary considering

the space consumption and redisplay speed. Should dl the object be mouse

sensitive items? Context dependent mouse sensitivity is a徹)rdable or no.

P conclusions:

1) Must install output recording mechanism. Should provide a constant

which has the maximum.numbers or Hnes/items･ (we all agree with the

output recording feature ls useful though it is heavy. need some purglng

mechanism. )

2) Presentation type is very important･ Prep.are the raciHty to get user de一

挺ned presentation type. A new dennition using C器os named presentation

class is introduced.

3) Sensitivity control considering the mouse speed should be needed.

Issue 4. Font and Multi Nationa一 Character Presentation

b discussions: Japanese characters should be handled. Can display several

fonts in the window or no. Two things to consider are, a case for multi-font

strings and a caseめr dignment / pitch control of displayed characters with

variable fonts.

D conclusion:

1) Provide multi lbnt ability, though font itself is implementation dependent.

The mechanism for it can be st,andardized.

2) Must consider the provision fらr dynamic adjustment of displayed charac-

ters with various fbnts.

 3 

Proc. Europal 90, pp245 - 252, March 1990



Issue 5. Widgets or Accessories

p discussions: Lots of window systems have lots of widgets/gadgets and

independent styles. User mendliness comes血om a uniもrmity of operations.

p conclusion:

1) Tbo much consideration br style guiding is not needed.

2) Coordination with Existing Styles or the styles of native window systems

is needed.

Issue 6, Input Editor

D discussions: We discussed about the needs for input請ont-end processor

(in a broader sense), Input Editing and Japanese character input mechanism

as an example. There exist severd Japanese character請ont-ends. Wnn, egg,

or commercial血ont-end package, should co-exist with our new window at

least with Hexibility.

> conclusion: There must be a common way to access the stream internal

buHer to alternate the character already input to that input stI･eam.

issue 7. Graphics Functions

p discussions: Provide rich請nctionamy 7　3D model is needed? Color

handling lS needed?

p conclusion: The Lisp window system we are thinking doesn't pro-

vide high level graphic tools, but a typical level ones. Must provide color

capabimy.

issue 8. implementation M°deI

p discussions: Is network oriented implementation needed?

D conclusion: We don't need to spec的the model details, since the target

machines have much variety.

issue 9. A New Window System or a Too一 Kit °n hpofother Windows

p discussions: Creating a new window system is attractive solution br the

above. On the other hand, if we start to develop a new window system hem

scratch, We might need to develop every codes which should cope with the

same血nctiondity as other windows will have in every minutes.

We want to share the progress of window technology as a user of other

window systems.

b conclusion: We will design and provide a window tool kit or user inter-

hce management system on top of various generd purpose window systems.

 4 

Proc. Europal 90, pp245 - 252, March 1990



Figure 1: Yy Layered Model

4　Tlle Design of yy window TooIKil aS a Conclusioll Cftlle above

AnaIysis

Yy Window Too一 Kit is the goal of our analysis and is an output of our

research works･ As a summary, lYis a CLOS based window tool kit with

our scheme of output recording. We design the lYas a layered tool kit with
three levels; NWSI, lYWS, and YyAPI.

NWSI: Native Window System Interhce Module
YWS; lYwindow system
YYAPI: Yy Application Program Interface

Figure 1 shows the model. NWSI depends on a native window system.

lYWS is a native window independent window system and manages all the
window objects･ The interhce between均,WS and NWSI is denned to be

independent from various underlying window systems as possible.胡PI

(Ida, 1989) is an Application Program lnterhce and is used by the users.

5　YyonX as art lmplementation of yy window TootKii

5.1 The Server-Client Model of YyonX

YyonX is a Yy Window Toot Kc'i on top of X-window, and is implemented

as a pilot.

The three layers of Yy Window Tat Kit are implemented by server-

client model shown in Fig.2. Yy-server is a server for Yy We'ndow TwI Kit

i Yy-client is a cHent. All the window operations are done by the cooperation

of these two process.

 5 

Proc. Europal 90, pp245 - 252, March 1990



mPI

辛苦;
NWSI

Figure 2: Implementation of lY with a server-client model

Yy-server has two parts; The device dependent part and the device in-

dependent part. The device dependent part is a NWSI Ibr X-window. The

device independent part is a kernel of lYlVS.
Yy-client has two parts: the application part or YyWS and the YYAPI.

Py-SerUer and Piy-client are implemented as X-clients. Then, they can be

loaded on separate machines on the network. There is Yy protocol donned

in (YY Project, 1989).

5･2　Run…g Envjrohmeht

To run YyonX the rollowmg requirements should be satisned.

1) Full Common Lisp, 2) X window Rll, 3) C器os implementation (as a

pilot implementation, use PCL)

e Characteristic concepts of YyonX

6.1 Meta Coordinate system

The coordinate system of X window has the orlgln at the top-len corner.

While, many graphics systems have the orlgln at the bottom-len comer.

To provide a nexibility on selecting the coordinate system in application

so請ware, user can choose which origin is suitable at the time of window

creation･ Since this feature uses the inheritance switching, all the selections

are done at the initialization stage, there is no overhead on run time.

6･2　0utput Recording and its Dynamic Contro一, Presentation

YyonX has an output recording and a presentation system. The basic com-

ponents of presentation system are implemented as C器os classes. Our pre-

sentation system is simpler than SymboHcs'one. There is no implicit inher-

itance･ The maximum number of recorded objects is controlled by a special

constant.

Presentation system provides a mechmism to accept狐Output recorded

object on the screen rather than typing the same thing. Since Yy We'ndow

Toot Kit has a mouse-still concept at the kernel level and is used to trigger

an inspection procedure asynchronously, placing a mouse to a candidate fらr

 6 

Proc. Europal 90, pp245 - 252, March 1990



a certain short period tri腿erS tO Check the class md place a wire rectangle

around it if it is a success血l candidate･ If it is the user)s choice, clicking it

accepts it as an object to input.

6･3　Functionality ieveI which is eq川Vaient to Common Windows

As many feasible drawlng Primitives a,s possible will be provided. The func-

tionality level of l函)nX application programmer interlace is arranged as an

equlValent to Common Windows.

6.4 input Editor and Multi-Nationa一 Features

One oでthe problem is which めnt is assumed to display multi一mationd char-

acters･ As ror japanese characters, there are several ways to provide japanese

character ronts･ The rout set for YyonX is selectable.

As ror Japanese text input front-end, 1与onXcan switch between a custom

made血ont-end and a Wnn Jserver.

Mini bu能I is provided br input editing･

As for characterお皿t manlpulationl Character data type of Common Lisp

llaS an attribute br it) and we wiu先山ow the update compiled by X3J13･

6.5　Distribution of the Loads

Server/Client model enables a distribution of the CPU and memory loads

into two machines･ Fig･3 shows a case fbi three machines) co-Operation･

Machine A and Machine B communicates with X-protocol･ Machine B and

Machine C communicates with lヤーprotocol. With this con五guration, actual

application is supposed to be on machine C) and Japanese Input hont-end

which sometimes needs heavy loads on CPU and memory can be separated

五〇m actud ap担cation on C.

1ヤーprotocol uses 4 byte unit packets to communicate. It includes au the

functions with compact representation･ Currently we have 48 instructions

and three types･ Intermittent synchronization feature enables asynchronous

operations of the both sides･ mr minimum case) only 12 bytes are necessary

to command･ lY protocol is designed to reduce the network tra寵c without

degrading the mnctionality.

7　Primitive C一asses

7･l Position and Region

Position and Region are the most primitive classes in YyonX ･ Position is an

object for a position in XY coordinates･ Region is an object br a rectangular

area.

Region has six slots logically; :top) :bottom) :len, :width, :height, and

:right.

 7 

Proc. Europal 90, pp245 - 252, March 1990



- X-Protocol --7iy-Protocol-

Machine A Machine B Machine C

Figure 3: A Maximum Case ror Yy Execution Environment

Region can be handled with LBRT (le乱bottom-right-top) concept or

LBWH (le乱bottom-width-height) concept as user likes it.

7.2　Active-Region

Active-reg10n is mouse-sensitive region. Several mouse一methods like enter-

reglOn, exit-region,狐e provided.

This active-reglOn mechanism is completely independent and di鮪rent

五〇m presentation. With active-reglOn, user may de允ne arbitrary rectangle.

7.3　5tream

Input and output with Yy Wc'ndow T00l Kit are through the streams. The

implementation is done with C器os, and is an extension of stream type

confbrmlng David Gray's proposal to X3J13.

The prlmary Streams are a graPhic一gtream and its two sub classes

named曹indoU-Stream and bitmap-stream.

On the other hand, event-strem is provided to support the handling of

asynchronous Input events. Mouse cursor movement, button clicking intbr一

nation, event status, and keyboard interruption are passed via event-stream.

7･4　World. Viewport and Page

The reglOn Which is a subject to display lS Cane寄 a world. The part of world

which is appeared on the screen is cdled viewport. Page is fらr a nxed width

world.

7.5　Stipple

The target of bitmap-stream is called stipple. Object can be transferred

between stipple and world.

 8 

Proc. Europal 90, pp245 - 252, March 1990



Figure 4: World, Viewport and Window

7･6　Ciass management in均′WS

In YyWS, all the windows, Window components and presented outputs be-

long to classes. These classes have several multiple inheritance relations.

Region class is used as one of the most primitive classes md is inherited

by several window classes. As its nature, class inheritance is used to provide

a module/procedure library.

8　Window stu什S

8.1 The Structure and the Operations br Window

Window is composed of title and血ame. Title might not exist. Acces-

sories can be attached to title and血ame. A hame is a viewport or a page.

The edge of 缶ame can have a width and is cdled border.曙ame supports

scrouing･ Viewport scrolnng is possible fらr top-bottom and le乱right. Page

strolling lS Only possible onlyめr top-bottom. Fig.4 shows the relation be-

tween world, viewport and window. Coordinate system indicator is for the

 9 

Proc. Europal 90, pp245 - 252, March 1990



meta coordinate system･ The indicator of Fig.4 example shows the orlgln is

the len-bottom.

Window class de穐nition has slots to describe p頒ent relationship and sib-

ling relationship. The root is a root window.

Window has a rectanglar area and is composed of title-bar, border, scrou

bar, Coordinate system indicator area, and hame. Viewport or page is

napped to 血ame.

Both graphic drawlng and text display a.re permitted on viewport. Top-

bottom and le乱right scrolling are aHowed on viewport.

On the otherhmd, Le乱right scrouing lS not permitted fbi page. The

usage of page is assumed as interaction buEer like a lisp listener or a emacs

editor bu能r which can be de允ned as a鯖Ⅹed width ron paper. To achieve

high speed display on page, graphic drawing On page is not considered.

8･2　Window Creation and Drawmg

Window class has a slot to indicate whether the window is visible or no.

This vdue is determined at creation.

The size of window in a screen cm be determined by user. The width

and height of a 血ame are determined at creation. The dehult size of a world

is initially asslgned to the same value as its viewport. The dehult width of

a border is 1 dot. The width oftitle bar is the same as window width. The

height of title bar depends on the height of routs for title characters.

Whether title, Scroll bar and coordinate system indicator appear or no

can be controlled･ Most of the controlling parameters stored in the slots of

window instance are dynamicany changeable.

On the initial start up of tiyonX , a root window is created and displayed.

a guide window is then appeared as shown in Fig. 5. The root window

and the guide window have no title bar, scroll bar, and coordinate system

indicator displayed.

8.3 Icon

Icon is a display symbol which means a window is dormant. The window

which is displayed as an icon is drawable. But the contents are not displayed.

8.4　Drawlngto a Window

Drawlng With drawlng primitive is done through a graphic stream object. If

the window stream class, which is a subclass of the graphic stream, lS used,

drawlng is done to a world. If the bitmap strem class, which is another

subclass of the graphics stream, is used, drawing is done to a stipple. Graphic

primitives Hke drawlng a line or a circle) and text displaying primitives甜e

provided･ Common Lisp standard input/Output primitives can direct data

to the window stream in YyonX.

 10 

Proc. Europal 90, pp245 - 252, March 1990



Drawlng tO a Window is to add an additiond 'drawlng instance'to a slot

of the world instance. It means lYWS has no bit plane which corresponds
to each window.

9　Pop up Menu Operations

Window creation invokes the set up of accessories by de魚ult. The dehult

accessory is a pop up menuめr mouse right button. With this pop up menu,

Window operation can be selected.

For windows other than the root, Presslng a mouse button at the title

bar or border triggers to display a pop up menu. This menu oEers a choice

among the operations corresponding to each menu items. The pop up menu

for the root window is on its frame. This menu has a same functionality as

the above pop up menu, but an selecting a window operation added. The

rollowlng is the list or methods on pop up menu.

Move method: This method moves the position of a window.

Reshape method: This method changes the size of a window. The size

of each components of a window is changed but stin kept displayed.

Expose method: This method places a window on top the window

occlusion stack. The window is displayed as the top and the whole contents

of it are displayed.

Bury method; This method places a window on the bottom of the

window occlusion stack. The window is displayed as the bottom. The part

wllich is placed under other windows is not visible.

Flush method; This method removes a window instmce and severd

objects which are owned by it. These window instances are disappeared

血Om screen.

Clear method: This method clears the contents of a window and the

world which is connected to the hame.

Shrink methods This method removes a window五〇m the screen and

creates and displays an icon instead.

Expand method: This method removes an icon五〇m the screen and

displays the corresponding window. The window still has the same attribute

as it has beめre･ The window is displayed at the proper place, keeping its

sibHng relation.

10　Touse l勺mX

YyonX is started by lnitialize-yy command. This makes a root window

displayed･ A root window is a window ofX window. So every X window

handling lS applied to the root window･ Fig･ 5 shows an example･ Multi-

ple worlds can be handled in one root window･ Multiple root window can
be invoked at the same time･ They are assigned di臓rent processes･ The

communication between them should be explicitly directed by the user.

 11 

Proc. Europal 90, pp245 - 252, March 1990



容は良い大貴です Selecttoselectthdo南 0 日本誌が使えますhglishisvariable▼ 剿�｢闔ｨ而苻�ｲ�

>(eXposea) く南indo9450X422at(15,62)9> 

Be卯o 僂 tー 

苗穂 劔>a く曹indo945ex422at(15,62)9> 

...I.lP,.. 〇･ 劔YY>くdra9-Circle-xya20020050sbrush- idth10idashing'(55)) IL 

一I 〇一一 --,ml---- 劔YY>(drat7-line-xya2020400200gbrush 冒idth20) IL W>(bitblt奪autO-icon蓉00a200300) IL W>○ 

A root window can hold arbitrary numbers of windows inside. This example displays four

windows. One Lisp listener window is automatically appeared.

A root window always have a guide window a吊he bottom. The guide window is used by

input editor, system warning/guiding message, Japanese text input柵ont-end and so on.

Figure 5; An example display of YyonX

 12 

Proc. Europal 90, pp245 - 252, March 1990



A root window dways have a guide window at the bottom. A guide

window is used by input editor･ system warning/guiding message･ Japanese

text input血ont-end and so on. A Lisp hstener window IS autOmaticdly

prepared. On cauing editor, GnuEmacs is invoked with the user's normd
initi ahzation.

Scroll bar and standard popup menu are provided br each window. Fbi

viewport ha血e, bars are appeared on the len and the bottom. F♭r page

hame, bar on the len is appeared. Standard popup menu contains prlmi-

tive operations like Shrink (Expand), Move, Reshape, Clear, Expose, Bury.

Furthermore, root window is glVen a menu Of specid operations to handle

whole window.

ll Deve一opment Status

The development of YyonX started on April 1989. 0n October 1989, the

prototype started to work.

We are evaluating the server-cHent model of us. With the server-client

model, YyonX splits a I.isp application into two. It enables the reduction

of CPU load and memory load of one machine. Application so請W頒e Can nt

with smaller machines than lau_in_one) window tool kit.

AckhOWIedgement

The main缶amework of this research was bom in the discussions under the

1988 Jeida Common Lisp Committee Secretariat meetings. The authors

would like to express their gratitude to all the members of JCLC.

AIso thanks are due to the lmI of Japan, ANSI X3J13 committee mem-
bers, Dr･ Richard Gabriel (Lucid Inc･/ Stanfbrd Univ.), Mr. Fritz Kunze

(Franz Inc･), and Mr･ Bill York (International I･isp Associates) Tor their
assistances.

References

1. M.Ida: "YYAPI Externd Spec誼cation Manual''1989 Dec.

2･ M･Ida, T.Kosaka, K.Tanaka: "Design of YYonX ''Proc. IPSJ annual

conf., march 1990

3･ M･Ida, et.al言"A Requlrement Analysisめr A Portable Window System"

ibid.

4･ T･ Kosaka, et.al. : '.Design of YYWS for YYonX" ibid.

5･ K･ Tanaka, et.確言"Design of YY-server fらr YYonX" ibid.

6･ YyProject : "YyProtocoI Specincation Manual" 1989 Doc.

 13 

Proc. Europal 90, pp245 - 252, March 1990


