% " Tokyo,July 13—15, 1989

Design and Implementation of the Information Server
— A User Information Database System for the Distributed System Apostle -

Keisuke Tanaka® and Masayuki Idat
Corriputer Science Reserach Lab.
Information Science Research Center
Aoyama Gakuin University
Address: 4-4-25 Shibuya, Shibuya-ku, Tokyo Japan 150

Abstract

The Trinity Initiative is a projeét of Information Science Research Center of Aoyama Gakuin
University. A distributed system called "Apostle’ is the kernel of the Trinity Initiative. Apostle provides
an integrated computing environment to users among loosely coupled component computers of three
campuses of Aoyama Gakuin University. All the component computers are connected each other via
synchronous lines. The Information Server (IS) is one of the subsystems of Apostle. This paper
describes a design and an implementation of IS.

IS is upward compatible with YP (Yellow Pages): IS is a distributed database system to manage
information on users. Apostle uses this information to provide a computing environment to a user. IS

" has the following features. 1) IS provides the same user information to all the software subsystems and
all the users on all the component computers. 2) Each‘ component computer has the replica of the same
user information database. 3) References to the user information database of IS are applied to the
replica of the local component computer, 80 as not to cause a traffic on serial lines,upon every reference.
4) Mechanisms for simultaneous update of all the replicas are designed to have the shortest critical
region to avoid the possibility of inconsistency as possible. 5) IS divides the roles of management of

_ the database intobse.veral group managers.

1 Introduction computing environment on this network. The de-
velopment of this project has the following two
1.1 Apostle System phases:
.. o = . 1) construction of a distributed operating system
The Trinity Initiative is a project developed by called *Apostle’,

Computer Science Research Laboratory (CSRL) 2) construction of an integrated computing envi-

of Information Science Research Center (ISRC) ronment over whole network of ISRC using Apos-
at Aoyama Gakuin University (AGU). AGU has ile 55 the sore

three ca}n}puses.; ’Ao-ya.ma., S'etagaya and Atsugi. Figure 1 shows the network for the Trinity Ini-
The Trinity Initiative provides a network over

- tiative.
these three campuses. It provides an integrated

Apostle works on the three gateway computers
* keisukeXcc.aoysma.ac.jperelay.cs.net of campuses. Each gateway is called ’component
! idaXaoyama.ac.jperelay.cs.net computer’. Operating systems on these three

—163—

JWCC '89

component computers are v1rtually integrated
into one distributed operating system. For this
purpose, we desxgned three software subsystems

for Apostle. One is the user information database

subsystem called Information Server (IS). An-
other is the User Interface subsystem (UI). And
the other is the File Cacher subsystem (FC).

IS manages information on users of Apostle.
Other two subsystems use the information served
by IS. UI provides a uniform computing environ-
ment to users. User can log in to the same en-
vironment which is independent from the compo-
nent computer he uses. FC is a support mech-
anism to access files on remote machines from
the local machine the user loges in. We choose
UNIX (SunOS) for a base Operating System for
"Apostle’. The overview of Apostle is described in
[Ida88] and [CSRLSS).

This paper describes the details of the Infor-
mation Server of Apostle.

1.2 User Management with User
Information Database

In general, most computer systems have
databases holding information on user computing
environments. Information stored in a database
is used to set up user computing environment,
to check file access right, and to keep the user’s
behavior under control. In other words, all activ-
ities of users in a computer system are authorized
using user information stored in a database. We
think that to manage users is to manage user in-
formation database.

Since Apostle is to provide a same computing
environment on all the component computers, all
the component computers must share this user
information database. IS provides a user infor-
mation database for this purpose.

2 'The Concept for User In-
formation Database Man-

agement in Apostle
2.1 Integration of Database

To use a computer system, every user is required
to type his login name and password. After his

Univ. of Tokyo (WIDE)

Setaga.ya r

Campus .

= T
SUN-4 .

ws!| |ws SUN-fi

B

Aoyama Campus

N

Atsugi
Campus
SUN%
Apostle

* ! component computer
of Apostle
===: super digital lines
between campuses
(64kbps)

Figure 1: A Network for the Trinity Initiative

successful login, his behavior is authorized against
information given from database with his login
name as the key. Usually, for cases of network
environments, the key for database of user infor-
mation is not login name but the pair of [login
name, host name]. Namely, the same login name
is possible among hosts connected to the same
network. But IS, the Information Server of Apos-
tle, unifies the login name through all the compo-
nent computers and makes database independent
from the hosts.

To achieve so, IS manages login names over all
the component computers of Apostle. And it pro-
vides the same user information with login name
as the key. The user information is composed of
name information such as user name, group name,
the path name of a home directory, and so on.

2.2 Hierarchical Distribution of
the Roles to Manage Database

In Apostle, user information database is not man-
aged by one supervisor, but by group ‘managers.
’Group’ is the same concept as defined in UNIX.

~164 =

This structure prevents Apostle from the trouble
of too much concentration of control.

In UNIX, only one super user, which is a su-
pervisor of UNIX, has the right to modify ad-
ministrative data of system. This scheme is basi-
cally the feature for centralized management. But
according as network is developed, the following
weaknesses of this scheme become clear.

e the lack of quickness of administrative works
As network grows larger, the amount of
works of the supervisor becomes larger and
he becomes overloaded. This results in the

lack of quickness of administrative works.
o destabilization caused by centralized man-

agement

Since various kinds of control judgment rush
into one supervisor, his mistake may cause a
serious trouble on the whole network.

To minimize the occurrence of these two troubles,
we divide job roles of one supervisor into those of
several group managers.

We think ’group’ is supposed to be something
like laboratory or project group.

A organization using IS is assumed to have the
following two types of administration roles:

e the system manager, who manages the whole

" system: ’
This manager directly manages the whole ac-
tivity of Apostle system. He is responsible to
keep Apostle work well without any trouble.
He registers/modifies information on groups
or group managers. He has no role for the
details inside groups.

To avoid the concentration of the roles for ad-
ministration to one person, this system man-
ager is defined to be separated from a super
user of each component computer.
® group managers: .

A group manager registers/modifies informa-
tion on members of his group. Group itself
is not subject to him.

To make Apostle more secure, administrative
works of a group manager is automatically traced
by the system manager and audited.

The role of each group manager is strictly re-
stricted to the inside of his group. For example,
the maximum number of members of a group is a

Tokyo , July 13—15, 1989

subject of the system manager. A group manager
cannot change this number. For another exam-
ple, the file creation role of a group manager is
restricted by the system manager. A group man-
ager can create a home directory for his mem-
bers only under the directory fixed by the system
manager for his group. A group manager cannot
create files/directories under directories of other
groups.

This division of labors and the restrictidn of
works of a group manager inhibit him from un-
privileged work.

3 Design of the User Infor-
mation Database

3.1 The Contents of Database

There are two kinds of databases: one is a
database on groups, and another is a database on
users. Figure 2 shows the relationship between
records of the user database and records of the
group database. Figure 2 also shows that no user
can belong to multiple groups.

Items of each record of databases are as follows:
Each record of the database on groups has the
following items;

e group name: This name is used to identify
a group. Information on groups is obtained
with this name as the key.

e GID: GID is the same as GID of UNIX.

* number of allowed members: This nuniber
describes how many members the group can
have.

e information on group manager: This is a user .
name for the group manager of this group.

e the list of members belonging to the group

e miscellaneous information on group: This
information includes the real name of the
group and other various attributes about the

group.

These items are registered and modi-
fied by the system manager described in
2.2. A group manager cannot modify
the contents of these items except for
the list of members and miscellaneous
information on the group.

~=165—

JWCC '89

group user information
(group information) _Fuser information
group user jnformatjon
(group information) -Fuser information

Figure 2: The Relationship between Groups and
Users

Each record of the database on users has the fol-
lowing items:

e user name: This user name is the same as a
login name of UNIX. Other information on
the user is obtained with this name as the
key.

UI)i): UID is the same as UID of UNIX.
group name for his group

GID for his group

ISRC accounting system handle: Apostle ac-

counting system must be compatible with
the super computer accounting system of
ISRC. User’s accounting information is ob-

tained with this key.
e personal profile: This information includes

real name, organization name, post office ad-

dress, and so on.
e login password: Apostle, or UNIX, uses this

password for authentication for users.
e home directory path name
login shell name
e information for mail handling system: This

information includes the mailbox name of
the user and the location: of the mailbox.
The mailbox name is the one used for the
sender /recipient name of E-mail. The loca-
tion of mailbox is the description which com-
ponent computer has his mailbox file.

These items are registered and modified
by a group manager. A user has the
right to modify the contents of his items
about personal profile and password.

3.2 Placing of the Replicas on each
Component Computer

In Apostle system, the links between component
computers are 64kbps synchronous lines. It is ob-

vious that this line speed is much slower than
other LAN media, such as Ethernet. Further-
more, these links have the role as the back-
bone of the whole network described in Figure 1.
With these facts, we conclude that the frequency
of data transfer between component computers
should be reduced as possible.

We concluded that the frequency of references
of data of a user information database is more
often than that of modifications. The reason of

_the conclusion is as follows: The reference is oc-

curred for the following cases; on the login of a
user, on the checking of a user’s password, on the
starting of his shell, and so on. On the other
hand, the modification is occurred for the fol-
lowing cases; on the new registration of a user,
on changing password, on changing information
of a user’s computing environment. As a result,
the number of references increases in proportion
to the number of login and elapsed time of user.
While, the number of modifications increases in
proportion to the change of user’s status. Usu-
ally, the former situation is much more frequent
than the latter. Therefore, the traffic between
component computers for data references should
be considered first.

As a result, we decide to give the replica of
one same database to each component computer.
In other words, this means each component com-
puter has the same database. Since all component
computers have database locally, database refer-
ence is local and traffic between component com-

.puters is not needed to refer data. On the other

hand, it is assumed that appropriate mechanism
is necessary upon updating data among replicas.
We employ a server-client model to manage

.these replicas. Each component computer has

two servers which manages the replicain it; One is
for data references, and the other is for database
update. Since only the servers can access the
replica directly, for data access, a user is necessary
to start an appropriate client process. The client
process requests the servers to access database.

3.3 Integrity Consideration

To keep the integrity of the user information
database, several provisions like lock mechanism,
priority dispatching, automatic repairing should

—166—

be considered in general. These provisions have
relations to so called secure update scheme.

We must take care of the locking mechanism
to prevent replicas from the inconsistency due to
multiple update requests at the same time. A pro-
cess which wants to modify information should
make a lock on the whole IS system. In our
design, a client process requests all the update
servers to make a lock.

We must also take care of the facilities to deter-
mine priorities of multiple update requests. Each
updating server on a component computer must
have its own priority different from others. A
client asks the highest priority server to supply
the privilege for updating. Only the highest pri-
ority server can supply the privilege for updating,
and the client which gets the privilege from the
highest server can make a lock on IS. Because of
this lock and priority system, the inconsistency
due to simultaneous multiple update requests is
avoided. '

To implement the procedures for lock system
and priority dispatch system, Apostle has a secure
updating subsystem described in 4.3.

To cope with the worst case like a communica-
tion failure causing an inconsistency among repli-
cas, we provide a mechanism to check the consis-
tency among replicas. This check is done period-
ically and if an inconsistency is found, this fact
is reported to the system manager. Since an in-
consistency is occurred only in very complicated
situations, we don’t expect automatic repairing is
effective. With this expectation, we don’t support
automatic repairing system for replicas. However,
we provide several commands to aid the system
manager to keep the integrity of the database.

3.4 Data References

Any client, which wants to refer data, commu-
nicates a server for data references in the local
component computer. As a result of our design
described in 3.2, traffic between component com-
puter is not necessary for data references.

3.5 Data Update Algorithm

To design a distributed database system with
multiple copies of the same contents, we can take

Tokyo , July 13—15, 1989

the following two scheme for database update al-
gorithm into account.

o define one of the copies as the master
database: With this scheme, the target of
update procedure is the master database.
After the master is updated, the whole con-
tents of a new master database or a partial
information to update other copies is sent to
other component computers.

The mechanism for this scheme is very sim-
ple. But during the time period from fin-
ishing updating of the master till finishing
updating all the others, the temporary in-
consistency among copies exists. And a fail-
ure during the sending update data from the
master database results in the inconsistency
among copies.

Figure 3 shows a time table for this scheme.
The temporary inconsistency among copies
exists during the period from t, to t5 for
Tupdatc—ml T4ipe and Tupdale-

e define all replicas as symmetric components:
With this scheme, a update request is sent to
all replicas on component computers at once.
Figure 4 shows a time table for this scheme.
The temporary inconsistency among copies
exists during the period from t; to t; for
Tl:pda(e' The chance of inconsistency for

this scheme is less than the former, because

the temporary inconsistent period doesn’t in-
clude the data transfer phase, like Ty;,¢ of

Figure 3. Meanwhile, since it is necessary to

keep status of all replicas same, the mecha-

nism is more complex than the former.

There are the following relations
between Figure 3 timings and Figure 4 timings:

~167 —

JWCC 89

? t[l t‘z : t? t4 t!r, t16
| | I I~ 1
Tinit :r:enTupdate—m Tis 4 updat'Tterm

Tinit: " initial set for updating procedure
Ly ends sending update data to master
Tupdate—m: updating the master database
Taist: distribution of update data

: from the master '

Tpdate: updating all the replicas
Lierm: termination of updating procedure
C—/ critical region

Figure 3: A Time Table for Updating with the
One Master Database Scheme

! ’ ! '
? i y I I
[-] ; L
T‘im't Tdil(Tupdau term

T,-l,,,-,: initial set for updating procedure
Tq,-,,: distribution of update data

update’ updating all the replicas

Yermid termination of updating procedure
C——) critical region

Figure 4: A Time Table for Updating with the
Same Replicas Scheme

; Since T,Im-, needs the
communication with all
the component comput-
ers.

Tisnd 3 Tyend is only required for
Figure 3 case, since the
scheme in Figure 4 has no
master.

) Tupdau—m is only re-
quired for Figure 3 case,
since the scheme in Figure
4 has no master.

; Since T;m needs the dis-
tribution to all the compo-
nent computers and Ty;,,
needs distribution to all
except for the master.

Tinit < Tingq

Tupdale—m

Taist < Or =~ T.;m

; Since all copies are up-
dated for Figure 4 case
and all but the master are
updated for Figure 3 case.

’
T‘“Pd‘“c < Tupdate

; since T,'"m needs the

communication with all

the component comput-

ers.

We define the critical regions for updating are t,
to t5 in Figure 3 and ¢, to t3 in Figure 4.

’
Tiﬂ"m < Tterm

In general, Ty;,s is longer than Tupdaie—my
Tupdate and T‘:Pda,e. Since Tyi,¢ needs the com-
munication between processes in different compo-
nent computers, the time for T;,; depends on the
status of other component computers and the sta-
tus of links between component computers. For

- example, when one of remote component comput-
ers is down, a process which wants to communi-

cate with another process in the remote compo-
nent computer, must wait until the remote com-
ponent come back. Since we are not sure that all -
the component computers work well all the time,
we cannot expect the length of Ty;,¢. On the other

. ’
hand, since Typdate—m, Tupdate and updise don’t

need the interaction among component comput-

ers, we can expect the length of these time period
from the load of each component computer. To
reduce the affection to data references from the
temporary inconsistency in the critical region, the
critical region time length should be shorter as
possible and the critical region should not include
the unexpected time like Ty;,¢. For this reason,
we choose the latter algorithm for updating mech-

—168 —

Table 1: Files for Implementing Databases of IS

file YP map contents
mailbox aliases mailbox name
description '
group group group name
definition and its GID
password passwd user name and
definition ’[etc/passwd’
information
account account usee name and
description his account code
profile private user name and
his personal
profile
group apostle_group | group name and
makagement administrative
information for
group
management

anism of IS, though the total time length might
be not so different for both scheme.

4 The Implemehtatioh of IS

4.1 Database Files Managed in IS

The user database and the group database of
IS described in 3.1 are logical concepts. They
are implemented as the following 6 files: mail-
box description file, group definition file, pass-
word definition file, account description file, pro-
file file, group management file. These files are
YP maps[SUN86]. In other words, they are DBM
files made by DBM library of UNIX, because YP
maps are installed using DBM files. These files
are shown in Table 1.

Aliases, Group, and Passwd in Table 1 are the
YP maps originally produced by SUN Microsys-
tems. Other three YP maps are newly intro-
duced for Apostle. We don’t modify the form of
the former three YP maps which the current YP
uses. Therefore, IS is upward compatible with
YP[SUNS8S6].

Tokyo, July 13—15, 1989

bind ypserv
DBM fil
QB ——TFET) @) —Gpbnd)
5t
DBM fil DBM file client)

1: request for

ypservinformation
2: get ypserv information
3: data reference

Figure 5: Data Reference Steps

4.2 The Reference of Data Using
Ypserv

The mechanism to refer data is implemented us-
ing a server process called ypserv which is pro-
vided by the current YP. In IS, each component
computer of Apostle has its own ypserv, and each
ypserv manages the same copy of DBM file, a
replica.

The steps for data reference procedure are as
follows:

1. A client, a process which wants to refer any

data, asks the local ypbind where ypserv is.
2. Ypbind returns information on ypserv.
3. The client communicates with ypserv using

information from ypbind, and refers data.

Figure 5 shows this reference scheme.

In the current YP, ypbind uses the broadcast
function to search an active ypserv. In IS, be-
cause each component computer has ypserv on it,
it may be possible to eliminate ypbind. However,
removing ypbind means modification of many ex-
isting application programs which refer databases
managed by the current YP. For this reason, we
keep ypbind in IS.

4.3 Data Updating Procedure

The mechanism to update data is separated from
the mechanism to refer data, according to the
analysis described in 3.5.

—169—

JWCC '89

We introduce a new server process for this
mechanism. It is called ypupdated. Ypupdated re-
sides in each component computer and manages
DBM files on each component computer. This
mechanism assumes priority system. One of the
ypupdateds has the highest priority among them
over all the component computers. All ypupdateds
* but the highest priority one, know the way to
communicate with the highest ypupdated. The
steps for data updating procedure with lock and
priority dispatch scheme of 3.3 are as follows:

1. A client process which wants to update data
starts. A user who invokes this client is.
checked. If he has no privilege to modify
data (he is not a group manager or the data
is not his own), his request is rejected.

2. The client asks the local ypupdated process
to supply where is the highest priority ypup-
dated. The local ypupdated returns it.

3. The client asks the highest priority ypupdaled
to supply the privilege to send update data.
The ypupdated acknowledges it, unless the
ypupdated has already received another re-
quest. As an acknowledge tag, the ypupdated
sends the identifier of the on-going updating
procedure to the client.

The ypupdated checks whether the request is

valid. A request from a user who is not per-
mitted to update the data is rejected.

4. The client sends the identifier to all other
ypupdateds. All the ypupdateds are locked for
this updating procedure until the procedure
finishes.

5. The client sends a transaction for updating
to all the ypupdateds.

6. After all the data transmission are done suc-
cessfully, the client requests the invocation
to modify database replicas to all the ypup-
dateds. To avoid inconsistency among repli-
cas, the procedure aborts at this step when
a data transmission failure is occurred (each
replica on component computer is not mod-
ified).

7. Each DBM file on component computer is
modified.

8. The client asks all the ypupdateds to release
the lock.

Figure 6 and Figure 7 show this scheme. The

ate

DBM fild

(2]

vn

(pupdated) ste

7 3

L] y
DBM file [DBM file ! 3 client

2: get information
about ypupdated
3: get identifier
for modification

Figure 6: Data Updating Steps (1)

4,5,6,8

update pupdate
= =1

DBM file DBM file 1p5-(client)
P =

J
4,5,6,8
4: lock
5: send data
6: start update procedure
7: DBM file is updated
8: unlock

Figure 7: Data Updating Steps (2)

numbers appeared in Figure 6 and 7 correspond
to the above step numbers.

4.4 Clients to Update Data

The clients to update data are implemented as
several commands. Table 2 shows the repertory of
commands for a requester to update data. There
are 6 commands; 3 for groups and 3 for users.
Newgroup creates a new record for a group.
Newgroup invokes newuser to register a group
manager. Modgroup modifies a record for a group.
Delgroup deletes a record for a group. Delgroup
invokes deluser to delete records for the group
manager and members of the group. Only the
system manager is allowed to use newgroup and

—170—

Table 2: Client Programs to Update Data

command name | explanation
newgroup a client to register

a new group
modgroup - a client to modify

information on a group
delgroup a client to delete

a group information
newuser a client to register

a new user
moduser a client to modify

information on a user
deluser a client to delete

a user information

delgroup. The system manager and a group man-
ager are allowed to use modgroup. The system
manager can modify all the items of a group
record. A group manager is allowed to use mod-
group only to modify his group record. Items he
can modify are described in 3.1.

Newuser creates a new record for a user.
Moduser modifies a record for a user. Deluser
deletes a record for a user. A group manager is
allowed to use newuser, moduser and deluser. A
group manager can modify all the items of a user
record using moduser. ‘A user is allowed to use
moduser only to modify his own record. Items
which a user can modify, are described in 3.1.

For registrations using newgroup or newuser, a
requester must give a list of items described in 3.1
to the command. All the commands confirm the
registration, modification or deletion by prompt-
ing a requester to acknowledge.

5 Discussion

5.1 Security on IS

Security problems are important parts of dis-

tributed systems. Security problems in IS are’

classified into several topics. We try to solve these
problems, but the current implementation is not
enough secure yet.

Tokyo,July 13—15, 1989

1) Security on Database Files of IS

Database files of IS are implemented as YP maps.
These maps are the DBM files of UNIX. Access
rights for these DBM files are set by the super
user. Usually, only the super user can read /write
these DBM files, and others cannot read/write
them. Since access rights for the DBM files are
subjects to a super user’s administrative works
not IS but the super user of a component com-
puter should take care of the DBM files security.

2) Security on References for Database

On UNIX, any user can read a user information
file, like ’/etc/passwd’. This means any user can
refer information on other users. In YP provided
by SUN, this scheme is kept. Any user can get
information on others in database managed by
YP. Since the mechanisms for references of data
of IS are the same as the current YP, any user can
get information of others from database of IS.

This is one of the weaknesses of UNIX. We can
choose to design a more secure operating system
or to implement functional interface to read/write
such important data. The current Apostle uses
the traditional UNIX interface or YP interface.
A more secure mechanism for references is future
problem.

3) Security on Modifications for Database

On modifications of data, both a server and a
clients for updating procedure check the rights
for a requester to modify data. A client communi-
cates with a server using Interprocess Communi-
cation (IPC) mechanism of UNIX. Since the cur-_
rent implementation of IPC mechanism of UNIX
is not so secure (see next paragraph), a false state-
ment from vicious users cannot be rejected. This
problem will be solved by prompting a user to
type password or implementing the mechanism
of call-back from the client.

4) Other topics on Security problems

Many of common security problems on network
come from the design of the current implemen-
tation of IPC mechanism of UNIX. For example,
since any user can use IPC mechanism of UNIX,

—171—

JWCC 89

he can call any server. However, the server cannot
know who really calls the server. "

All the IPC mechanisms must be newly imple-
mented to resolve this problem. However, it is
out of scope of Apostle.

6 Conclusions

As a summary, IS has the following features:

e The uniform database is managed on a net-
work.

e On the reference of data, data transfer is not
necessary between component computers.
Each component computer has a replica of
one master database. Therefore, any refer-

ence of data is processed locally inside the

component computer. This feature is impor-
tant for the case of Apostle, because the links
between component computers in Apostle are
not assumed to be high bandwidth.

e The inconsistency among replicas of
database cannot occur with usual situation.

Database is managed in the distributed
scheme. Since each replica of database
is updated synchronously, the inconsistency
among replica must not be occurred. How-
ever, on the modification of data, all com-
ponent computers with a server to manage

database must be alive.
e The essential mechanisms of IS and the

structure of database don’t depend on the
operating system or the administrative con-
cepts on each component computer.

The operating system of each component
computer can interpret and use the contents
of IS database.. It means that several dif-
ferent machines can compose a distributed
system with IS described in this paper.

Under the current implementation for Apos-
tle, each component computer is happened
to be the same. As the consequence, all the
mechanisms on each component computer

are happened to be the same.
o The concept of groups in UNIX is re-defined

as groups for the administration.

" Because of this extended concept of groups,
users can be managed under groups. Roles
of administration of super-user is distributed

into several group managers. This feature is
important for UNIX system with many users.

The IS is designed for Apostle. Since the IS is
implemented as portable as possible, it may be
workable on a different distributed system.

One of our goals is the integration with the
whole system of the Trinity Initiative. An inte-
grated administration system in the ISRC net-
work is one of the goals of the Trinity Initia-
tive. For this purpose, database management
system for user information not only for Apostle
but also for whole the network will be necessary.
We are now designing this total database man-
agement system. IS should cooperate with this
total database system. The affects on IS to do so
is a future problem.

Acknowledgment

The authors would like to thank Prof. Hiroshi
Oyachi (director, ISRC of AGU), Prof. Hisao
Nishioka (president, AGU), and Prof. Kinjiro
Ohki (chancellor, Aoyama Gakuin) for their ad-
vice and encouragements.

References

[Ida88] Masayuki Ida and Keisuke Tanaka, 'The
Harmonic Connection Concept in the Trin-
ily Initiative of Aoyama Gakuin University’,
Proc. of 3rd International Joint Computer
Communication Workshop, pp. 111-120, Jul.

1988.
[CSRL88] Masayuki Ida and Keisuke Tanaka,

"The Apostle System Overview’, CSRL Tech-
nical Report #88-001, Aug. 1988.

[SUN86] Sun Microsystems Inc. 'The Yellow
Pages Protocol Specification,’ Feb. 1986.

=172

