TR#88-002

The Information Server
—A User Information Database System for Apostle—

Technical Report No. 88-002

Keisuke Tanaka* and Masayuki Ida'
Computer Science Research Laboratory

Information Science Research Center

Aoyama Gakuin University
Address: 4-4-25 Shibuya, Shibuya-ku, Tokyo Japan 150

Feburary 1989

* keisuke%cc.aoyama.junet@relay.cs.net
t ida%aoyama.; junet@relay.cs.net

Abstract

The Trinity Initiative is a project of Information Science Research Center of Aoyama
Gakuin University. A distributed system called ’Apostle’ is the kernel of the Trinity
Initiative. Apostle provides an integrated computing environment to users among loosely
coupled component computers of three campuses of Aoyama Gakuin University. All the
component computers are connected each other via synchronous lines. The Information
Server (IS) is one of the subsystems of Apostle. This paper describes a design and an
implementation of IS.

IS is upward compatible with YP (Yellow Pages). IS is a distributed database system
to manage information on users. Apostle uses this information to provide a computing
environment to a user. IS has the following features. 1) IS provides the same user infor-
mation to all the software subsystems and all the users on all the component computers.
2) Each component computer has the replica of the same user information database. 3)
References to the user information database of IS are applied to the replica of the local
component computer, so as not to cause a traffic on serial lines upon every reference. 4)
Mechanisms for simultaneous update of all the replicas are designed to have the shortest
critical region to avoid the possibility of inconsistency as possible. 5) IS divides the roles
of management of the database into several group managers.

1 Introduction

1.1 Apostle System

The Trinity Initiative is a project developed by Computer Science Research Laboratory
(CSRL) of Information Science Research Center (ISRC) at Aoyama Gakuin University
(AGU). AGU has three campuses; Aoyama, Setagaya and Atsugi. The Trinity Initiative
provides a network over these three campuses. It provides an integrated computing envi-
ronment on this network. The development of this project has the following two phases:
1) construction of a distributed operating system called "Apostle’,

2) construction of an integrated computing environment over whole network of ISRC using
Apostle as the core.

Figure 1 shows the network for the Trinity Initiative.

Apostle works on the three gateway computers of campuses. Each gateway is called
’component computer’. Operating systems on these three component computers are vir-
tually integrated into one distributed operating system. For this purpose, we designed
three software subsystems for Apostle. One is the user information database subsystem
called Information Server (IS). Another is the User Interface subsystem (UI). And the
other is the File Cacher subsystem (FC).

IS manages information on users of 4postle. Other two subsystems use the information
served by IS. Ul provides a uniform computing environment to users. User can log in to
the same environment which is independent from the component computer he uses. FC
is a support mechanism to access files on remote machines from the local machine the
user loges in. We choose UNIX (SunOS) for a base Operating System for *Apostle’. The
overview of Apostle is described in [CSRLSS].

This paper describes the details of the Information Server of Apostle.

1.2 User Management with User Information Database

In general, most computer systems have databases holding information on user comput-
ing environments. Information stored in a database is used to set up user computing
environment, to check file access right, and to keep the user’s behavior under control. In
other words, all activities of users in a computer system are authorized using user informa-
tion stored in a database. We think that to manage users is to manage user information
database.

Since Apostle is to provide a same computing environment on all the component comput-

ers, all the component computers must share this user information database. IS provides

a user information database for this purpose.

Wide Area Network

, §

Setagaya
SX-1EA
—T——HSUN’% .
Ts| |Ws SUN-4
Atsugi
\ —HSUN-4f=
TS| |WS
Apostle

TS

L

*: component computer of
Apostle

TS: Terminal Server
: super digital lines

between campuses

Figure 1: A Network for the Trinity Initiative

N

1.3 YP: A Base for IS

This section introduces YP (Yellow Pages) to make this paper self contained.
YP[SUNB86] is composed of two subsystems; one is ypserv, and the other is ypbind.
Ypserv serves the data reference service and is on every network server. The primary role
is the handling around the DBM! database reference function. Ypbind is a server for any
clients on the network which request to use YP functions. Ypserv resides on one server
of the network. Ypbind is on each workstation. The following steps are needed to access
data;
1) A client requests the ypbind on the same local host to search the host where ypservy is
running. '
2) The client accesses the ypserv using the information obtained from the ypbind.
There are two concepts for database management of YP. One is 'YP map’, and the other
is 'YP domain’. YP map is implemented as DBM file. This DBM file contains a. set of
key-value pairs, like user-name as a key and personal information as a value. YP domain

means a named set of YP maps.

'DBM is a database tool of UNIX.

2 The Concept for User Information Database Man-
agement in Apostle

2.1 Integration of Database about User Information

To use a computer system, every user is required to type his login name and password. Af-
ter his successful login, his behavior is authorized against information given from database
with his login name as the key. Usually, for cases of network environments, the key for
database of user information is not login name but the pair of [login name, host name).
Namely, the same login name is possible among hosts connected to the same network. But
IS, the Information Server of Apostle, unifies the login name through all the component
computers and makes database independent from the hosts.

To achieve so, IS manages login names over all the component computers of Apostle. And
it provides the same user information with login name as the key. The user information is
composed of name information such as user name, group name, the path name of a home

directory, and so on. For further discussion, see Chapter 3.

2.2 Hierarchical Distribution of the Roles to Manage Database

In Apostle, user information database is not managed by one supervisor, but by group
managers. ’Group’ is the same concept as defined in UNIX. This structure prevents
Apostle from the trouble of too much concentration of control.

In UNIX, only one super user, which is a supervisor of UNIX, has the right to modify
administrative data of system. This scheme is basically the feature for centralized man-
agement. But according as network is developed, the following weaknesses of this scheme
become clear.

e the lack of quickness of administrative works
As network grows larger, the amount of works of the supervisor becomes larger and

he becomes overloaded. This results in the lack of quickness of administrative works.

e destabilization caused by centralized management
Since various kinds of control judgment rush into one supervisor, his mistake may

cause a serious trouble on the whole network.

To minimize the occurrence of these two troubles, we divide job roles of one supervisor
into those of several group managers.

We think ’group’ is supposed to be something like laboratory or project group.

A organization using IS is assumed to have the following two types of administration

roles:

e the system manager, who manages the whole system:
This manager directly manages the whole activity of Apostle system. He is responsible
to keep Apostle work well without any trouble. He registers/modifies information on

groups or group managers. He has no role for the details inside groups.

To avoid the concentration of the roles for administration to one person, this system
manager is defined to be separated from a super user of each component computer.

® group managers:
A group manager registers/modifies information on members of his group. Group

itself is not subject to him.

"To make Apostle more secure, administrative works of a group manager is automatically
traced by the system manager and audited.

The role of each group manager is strictly restricted to the inside of his group. For
example, the maximum number of members of a group is a subject of the system manager.
A group manager cannot change this number. For another example, the file creation role
of a group manager is restricted by the system manager. A group manager can create
a home directory for his members only under the directory fixed by the system manager
for his group. A group manager cannot create files/directories under directories of other
groups.

‘This division of labors and the restriction of works of a group manager inhibit him from

unprivileged work.

3 Design of the User Information Database

3.1 The Contents of Database

There are two kinds of databases: one is a database on groups, and another is a database

on users. Figure 2 shows the relationship between records of the user database and records

of the group database. Figure 2 also shows that no user can belong to multiple groups.
Items of each record of databases are as follows:

¢ Each record of the database on groups has the following items;
— group name: This name is used to identify a group. Information on groups is
obtained with this name as the key.
— GID: GID is the same as GID of UNIX.

— number of allowed members: This number describes how many members the group

can have.

— information on group manager: This is a user name for the group manager of this
group.

— the list of members belonging to the group

— miscellaneous information on group: This information includes the real name of

the group and other various attributes about the group.

These items are registered and modified by the system manager described in 2.2.
A group manager cannot modify the contents of these items except for the list of
members and miscellaneous information on the group.

o Each record of the database on users has the following items:
— user name: This user name is the same as a login name of UNIX. Other information
on the user is obtained with this name as the key.
— UID: UID is the same as UID of UNIX.
— group name for his group

— GID for his group

— ISRC accounting system handle: Apostle accounting system must be compatible
with the super computer accounting system of ISRC. User’s accounting informa-

tion is obtained with this key.

-

(grou name; (group name:
group in ormatxon) group information)
[ik |
(user name: (user name: . (user name: (user name:
user information) user information) user information) user information) o

Figure 2: The Relationship between Groups and Users

— personal profile: This information includes real name, organization name, post

office address, and so on.
— login password: Apostle, or UNIX, uses this password for authentication for users.
— home directory path name
— login shell name

— information for mail handling system: This information includes the mailbox
name of the user and the location of the mailbox. The mailbox name is the one
used for the sender/recipient name of E-mail. The location of mailbox is the
description which component computer has his mailbox file. Further explanations
are described in Appendix.

These items are registered and modified by a group manager. A user has the right to
modify the contents of his items about personal profile and password.

3.2 Placing of the Replicas of the Database on each Component
Computer

In Apostle system, the links between component computers are 64kbps synchronous lines.
It is obvious that this line speed is much slower than other LAN media, such as Ethernet.
Furthermore, these links have the role as the backbone of the whole network described
in Figure 1. With these facts, we conclude that the frequency of data transfer between
component computers should be reduced as possible.

We concluded that the frequency of references of data of a user information database
is more often than that of modifications. The reason of the conclusion is as follows: The

reference is occurred for the following cases; on the login of a user, on the checking of a

7

user’s password, on the starting of his shell, and so on. On the other hand, the modification
is occurred for the following cases; on the new registration of a user, on changing password,
on changing information of a user’s computing environment. As a result, the number of
references increases in proportion to the number of login and elapsed time of user. While,
the number of modifications increases in proportion to the change of user’s status. Usually,
the former situation is much more frequent than the latter. Therefore, the traffic between
component computers for data references should be considered first.

As a result, we decide to give the replica of one same database to each component
computer. In other words, this means each component computer has the same database.
Since all component computers have database locally, database reference is local and
traffic between component computers is not needed to refer data. On the other hand, it
is assumed that appropriate mechanism is necessary upon updating data among replicas.

We employ a seryer-client model to manage these replicas. Each component computer
has two servers which manages the replica in it; One is for data references, and the other is
for database update. Since only the servers can access the replica directly, for data access,
a user is necessary to start an appropriate client process. The client process requests the

servers to access database.

3.3 Integrity Consideration

To keep the integrity of the user information database, several provisions like lock mech-
anism, priority dispatching, automatic repairing should be considered in general. These
provisions have relations to so called secure update scheme.

We must take care of the locking mechanism to prevent replicas from the inconsistency
due to multiple update requests at the same time. A process which wants to modify
information should make a lock on the whole IS system. In our design, a client process
requests all the update servers to make a lock.

We must also take care of the facilities to determine priorities of multiple update re-
quests. Each updating server on a component computer must have its own priority dif-
ferent from others. A client asks the highest priority server to supply the privilege for
updating. Only the highest priority server can supply the privilege for updating, and the
client which gets the privilege from the highest server can make a lock on IS. Because
of this lock and priority system, the inconsistency due to simultaneous multiple update
requests is avoided.

To implement the procedures for lock system and priority dispatch system, Apostle has
a secure updating subsystem described in 4.3.

To cope with the worst case like a communication failure causing an inconsistency among

replicas, we provide a mechanism to check the consistency among replicas. This check is
done periodically and if an inconsistency is found, this fact is reported to the system
manager. Since an inconsistency is occurred only in very complicated situations, we don’t
expect automatic repairing is effective. With this expectation, we don’t support automatic
repairing system for replicas. However, we provide several commands to aid the system
manager to keep the integrity of the database.

3.4 Data References

Any client, which wants to refer data, communicates a server for data references in the
local component computer. As a result of our design described in 3.2, traffic between
component computer is not necessary for data references.

3.5 Data Update Algorithm

To design a distributed database system with multiple copies of the same contents, we
can take the following two scheme for database update algorithm into account.

o define one of the copies as the master database: With this scheme, the target of update
procedure is the master database. After the master is updated, the whole contents of
a new master database or a partial information to update other copies is sent to other

component computers.

The mechanism for this scheme is very simple. But during the time period from
finishing updating of the master till finishing updating all the others, the temporary
inconsistency among copies exists. And a failure during the sending update data from

the master database results in the inconsistency among copies.

Figure 3 shows a time table for this scheme. The temporary inconsistency among

copies exists during the period from ¢, to t5 for Tupdate—m, Taist and Tupdate-

e define all replicas as symmetric components: With this scheme, a update request is

sent to all replicas on component computers at once.

Figure 4 shows a time table for this scheme. The temporary inconsistency among
copies exists during the period from ¢, to t; for T;pda,e. The chance of inconsistency
for this scheme is less than the former, because the temporary inconsistent period
doesn’t include the data transfer phase, like Ty;,; of Figure 3. Meanwhile, since it is
necessary to keep status of all replicas same, the mechanism is more complex than the

former.

There are the following relations between Figure 3 timings and Figure 4 timings:

9

! I l

T;'nit Tsend -[‘updatc—m Tdi.st Tupdate T'tcrm
Tinie: initial set for updating procedure
Tsend: sending update data to master
Tipdate-m: updating the master database
Tyie: distribution of update data from the master
Tupdate: updating all the replicas
Tierm: termination of updating procedure

C— critical region

Figure 3: A Time Table for Updating with the One Master Database Scheme

; 4 t,
, | , , '
T; Tdist T T,

init update term

t

——

initial set for updating procedure
Tyioet distribution of update data
update: updating all the replicas

: termination of updating procedure
C——3 critical region

Figure 4: A Time Table for Updating with the Same Replicas Scheme

10

Tinit < Tinit ; Since T},;, needs the communication with all the
component computers.

Toend ; Tsend is only required for Figure 3 case, since the
scheme in Figure 4 has no master.

Tupdate—m 3 Tupdate—m 1s only required for Figure 3 case, since

the scheme in Figure 4 has no master.

Tyin < or o T;ist ; Since Téw needs the distribution to all the com-
ponent computers and Ty;,, needs distribution to
all except for the master.

Tupdate < T,:pdate ; Since all copies are updated for Figure 4 case
and all but the master are updated for Figure 3
case.

Tierm < Tyerm ; since Tj, mneeds the communication with all

the component computers.

We define the critical regions for updating are ¢, to ¢5 in Figure 3 and t; to t; in Figure 4.
We want to know which procedure takes more time than the other. We must compare the
critical region time lengths of the two. It means whether TLupdate—m + Taist + Tupdate > T,:pdate
or no.

In general, we know that Ty, is longer than Tupdate—my Tupdate and T,:pdate. Since Ty,
needs the communication between processes in different component computers, the time
for Ty, depends on the status of other component computers and the status of links be-
tween component computers. For example, when one of remote component computers is
down, a process which wants to communicate with another process in the remote compo-
nent computer, must wait until the remote component come back. Since we are not sure
that all the component computers work well all the time, we cannot expect the length of
Tuist. On the other hand, since Tupdate—m, Tupdate and T;pdate don’t need the interaction
among component computers, we can expect the length of these time period from the
load of each component computer. To reduce the affection to data references from the
temporary inconsistency in the critical region, the critical region time length should be
shorter as possible and the critical region should not include the unexpected time like Ty;,;.
For this reason, we choose the latter algorithm for updating mechanism of IS, though the

total time length might be not so different for both scheme.

11

Table 1: Files for Implementing Databases of IS

file YP map name | contents

mailbox description file | aliases mailbox name

group definition file group group name and its GID

password definition file | passwd user name and ’/etc/passwd’ information

account description file | account usee name and his account code

profile file private user name and his personal profile

group management file | apostle_group | group name and administrative information
for group management

4 The Implementation of IS
4.1 Database Files Managed in IS

The user database and the group database of IS described in 3.1 are logical concepts.
They are implemented as the following 6 files: mailbox description file, group definition
file, password definition file, account description file, profile file, group management file.
These files are YP maps. In other words, they are DBM files made by DBM library of
UNIX. These files are shown in Table 1.

Aliases, Group, and Passwd in Table 1 are the YP maps originally produced by SUN
Microsystems. Other three YP maps are newly introduced for Apostle. We don’t modify
the form of the former three YP maps which the current YP uses. Therefore, IS is upward
compatible with YP.

4.2 The Reference of Data Using Ypserv

The mechanism to refer data is implemented using a server process called ypserv which
is provided by the current YP?. In IS, each component computer of Apostle has its own
ypserv, and each ypserv manages the same copy of DBM file, a replica.

The steps for data reference procedure are as follows:

1. A client, a process which wants to refer any data, asks the local ypbind where ypserv

is.
2. Ypbind returns information on ypserv.
3. The client communicates with ypserv using information from ypbind, and refers data.

Figure 5 shows this reference scheme.

2A summary of YP is introduced in 1.3.

‘ ypbind ’ ypserv

DBM file

(ypbind) -------- -(ypserv) Lypserv) (ypbind J

w
B [.¥)
-

DBM file DBM file ‘ client ,

1: request for ypserv information

2: get ypserv information

3: data reference

Figure 5: Data Reference Steps

In the current YP, ypbind uses the broadcast function to search an active ypserv. In IS,
because each component computer has ypserv on it, it may be possible to eliminate ypbind.
However, removing ypbind means modification of many existing application programs
which refer databases managed by the current YP. For this reason, we keep ypbind in IS.

4.3 Data Updating Procedure

The mechanism to update data is separated from the mechanism to refer data, according
to the analysis described in 3.5.

We introduce a new server process for this mechanism. It is called ypupdated. Ypup-
dated resides in each component computer and manages DBM files on each component
computer. This mechanism assumes priority system. One of the ypupdateds has the high-
est priority among them over all the component computers. All ypupdateds but the highest
priority one, know the way to communicate with the highest ypupdated. The steps for data
updating procedure with lock and priority dispatch scheme of 3.3 are as follows:

1. A client process which wants to update data starts. A user who invokes this client is
checked. If he has no privilege to modify data (he is not a group manager or the data

is not his own), his request is rejected.

13

2. The client asks the local ypupdated process to supply where is the highest priority
ypupdated. The local ypupdated returns it.

3. The client asks the highest priority ypupdated to supply the privilege to send up-
date data. The ypupdated acknowledges it, unless the ypupdated has already received
another request. As an acknowledge tag, the ypupdated sends the identifier of the
on-going updating procedure to the client.

The ypupdated checks whether the request is valid. A request from a user who is not
permitted to update the data is rejected.

4. The client sends the identifier to all other ypupdateds. All the ypupdateds are locked
for this updating procedure until the procedure finishes.

5. The client sends a transaction for updating to all the ypupdateds.

6. After all the data transmission are done successfully, the client requests the invocation
to modify database replicas to all the ypupdateds. To avoid inconsistency among
replicas, the procedure aborts at this step when a data transmission failure is occurred
(each replica on component computer is not modified).

7. Each DBM file on component computer is modified.
8. The client asks all the ypupdateds to release the lock.

Figure 6 and Figure 7 show this scheme. The numbers appeared in Figure 6 and 7
correspond to the above step numbers.

4.4 Clients to Update Data

The clients to update data are implemented as several commands. Table 2 shows the
repertory of commands for a requester to update data. There are 6 commands; 3 for
groups and 3 for users.

Newgroup creates a new record for a group. Newgroup invokes newuser to register a
group manager. Modgroup modifies a record for a group. Delgroup deletes a record for
a group. Delgroup invokes deluser to delete records for the group manager and members
of the group. Only the system manager is allowed to use newgroup and delgroup. The
system manager and a group manager are allowed to use modgroup. The system manager
can modify all the items of a group record. A group manager is allowed to use modgroup
only to modify his group record. Items he can modify are described in 3.1.

14

ypupdated

DBM file

ypupdated ypupdated

4

4

DBM file DBM file 2——@

2: get information about ypupdated
3: get identifier for modification

Figure 6: Data Updating Steps (1)

ypupdated
7

DBM file

4,5,6,8

ypupdated

ypupdated
7 4

DBM file DBM file 'W@‘,"‘D

J
4,5,6,8
: lock
: send data

: start update procedure
: DBM file is updated

~N O o

: unlock

8
Figure 7: Data Updating Steps (2)

15

Table 2: Client Programs to Update Data

command name | explanation

newgroup a client to register a new group
modgroup a client to modify information on a group
delgroup a client to delete a group information
newuser a client to register a new user

moduser a client to modify information on a user
deluser a client to delete a user information

Newuser creates a new record for a user. Moduser modifies a record for a user. Deluser
deletes a record for a user. A group manager is allowed to use newuser, moduser and
deluser. A group manager can modify all the items of a user record using moduser. A
user is allowed to use moduser only to modify his own record. Items which a user can
modify, are described in 3.1.

For registrations using newgroup or newuser, a requester must give a list of items de-
scribed in 3.1 to the command. All the commands confirm the registration, modification

or deletion by prompting a requester to acknowledge.

4.5 Provisions to Support Group Manager for Setting Up A
User Environment

To register a new user, a group manager will use newuser command. His home directory
should be created at the same time of this registration. Since a group manager is not
a super user though he has the role for this registration, he has no rights to create a
new directory and to change the ownership of the directory with ordinary mechanisms of
UNIX. For the distribution of the roles of super user’s administrative works, a mechanism
to give a group manager a part of rights of the super user is necessary. For this reason,
we support this mechanism on Apostle.

To support a group manager to set up environment for a new user, we introduce a server
process, called 'rsetupd.” The rsetupd is running on each component computer.

A client which wants to create a new home directory, asks rs etupd on the target compo-
nent computer to set up a new user’s environment. The target component computer on
which the home directory is to be created, is determined by the path name information in
the user information database. (Home directory path name information is brought from
the home directory field of the group manager’s record of user database at first.) Setting

up a user environment has the following steps:

16

. The target rsetupd checks the privilege of the request.

. The client sends rsetupd the three types of information on a new user to be created,
namely the path name of home directory, UID, and GID.

. Rsetupd creates the new home directory.
. Rsetupd puts several startup-files, such as ’.cshre’ or "login’, under the home directory.

. Rsetupd gives the ownership of files/directories to the new user.

17

5 Conclusions

5.1 Summary

As a summary, IS has the following features:
e The uniform database is managed on a network.

¢ On the reference of data, data transfer is not necessary between component computers.
Each component computer has a replica of one master database. Therefore, any
reference of data is processed locally inside the component computer. This feature is
important for the case of Apostle, because the links between component computers in
Apostle are not assumed to be high bandwidth.

¢ The inconsistency among replicas of database cannot occur with usual situation.
Database is managed in the distributed scheme. Since each replica of database is
updated synchronously, the inconsistency among replica must not be occurred. How-
ever, on the modification of data, all component computers with a server to manage
database must be alive.

o The essential mechanisms of IS and the structure of database don’t depend on the
operating system or the administrative concepts on each component computer.
The operating system of each component computer can interpret and use the contents
of IS database. It means that several different machines can compose a distributed
system with IS described in this paper.

Under the current implementation for Apostle, each component computer is happened
to be the same. As the consequence, all the mechanisms on each component computer

are happened to be the same.

e The concept of groups in UNIX is re-defined as groups for the administration.
Because of this extended concept of groups, users can be managed under groups.
Roles of administration of super-user is distributed into several group managers. This
feature is important for UNIX system with many users.

5.2 Security Considerations

Security problems are important parts of distributed systems. Security problems in IS are
classified into several topics. We try to solve these problems, but the current implemen-

tation is not enough secure yet.

18

1) Security on Database Files of IS

Database files of IS are implemented as YP maps. These maps are the DBM files of UNIX.
Access rights for these DBM files are set by the super user. Usually, only the super user
can read/write these DBM files, and others cannot read/write them. Since access rights
for the DBM files are subjects to a super user’s administrative works not IS but the super
user of a component computer should take care of the DBM files security.

2) Security on References for Database

On UNIX, any user can read a user information file, like '/etc/passwd’. This means any
user can refer information on other users. In YP provided by SUN, this scheme is kept.
Any user can get information on others in database managed by YP. Since the mechanisms
for references of data of IS are the same as the current YP, any user can get information
of others from database of IS.

This is one of the weaknesses of UNIX. We can choose to design a more secure op-
erating system or to implement functional interface to read/write such important data.
The current Apostle uses the traditional UNIX interface or YP interface. A more secure
mechanism for references is future problem.

3) Security on Modifications for Database

On modifications of data, both a server and a clients for updating procedure check the
rights for a requester to modify data. A client communicates with a server using Inter-
process Communication (IPC) mechanism of UNIX. Since the current implementation of
IPC mechanism of UNIX is not so secure (see next paragraph), a false statement from
vicious users cannot be rejected. This problem will be solved by prompting a user to type
password or implementing the mechanism of call-back from the client.

4) Other topics on Security problems

Many of common security problems on network come from the design of the current
implementation of IPC mechanism of UNIX. For example, since any user can use IPC
mechanism of UNIX, he can call any server. However, the server cannot know who really

calls the server.
All the IPC mechanisms must be newly implemented to resolve this problem. However,

it is out of scope of Apostle.

19

5.3 Further Consideration

The IS is designed for Apostle. Since the IS is implemented as portable as possible, it may
be workable on a different distributed system.

One of our goals is the integration with the whole system of the Trinity Initiative. An
integrated administration system in the ISRC network is one of the goals of the Trinity
Initiative. For this purpose, database management system for user information not only
for Apostle but also for whole the network will be necessary. We are now designing this
total database management system. IS should cooperate with this total database system.
The affects on IS to do so is a future problem.

20

Acknowledgment

The authors would like to express their gratitude to Prof. Hiroshi Oyachi (director, ISRC
of AGU), Prof. Hisao Nishioka (president, AGU), and Prof. Kinjiro Ohki (chancellor,
Aoyama Gakuin) and the office staffs of ISRC for their continuous encouragements.

References

[CSRL88] Masayuki Ida and Keisuke Tanaka, ’The Apostle System Overview’, CSRL
Technical Report #88-001, Aug. 1988.

[SUN86] Sun Microsystems Inc. *The Yellow Pages Protocol Specification,’ Feb. 1986.

[Allman83] E. Allman, Sendmail - An Interconnecting Mail Rerouter, Version 4.2, UNIX
Programmer’s Mannual, 4.2 Berkeley Software Distribution, 2¢, Virtual VAX-11 Ver-
sion, Univ. of California, Berkeley, August 1983.

21

Appendix: Considerations about E-mail addresses

We employ ’sendmaillAllman83)’ as our E-mail system for Apostle. E-mail system needs
the two types of information; one is 'name’ and the other is ‘address’.

Name means string used to identify the mailbox. Name appears in a message header of
E-mail. And we can use the name as the recipient /sender name of message, too.

On the other hand, address describes where the mailbox is located. In other words, the
address describes the host name to which a message is delivered and the user name of
the host. Using these two types of information, the host name and the user name, the
mailbox is identified.

In Apostle, a user can use the name of mailbox which is independent from the host
name of the component computer he use. For example, on one component computer
called ’aoyama’, the name of mailbox for *user’ is ‘user@aoyama.cc.aoyama.junet’. In this
mailbox name, ’aoyama’ means the host name, and ’cc.aoyama.junet’ for the domain name
in which the host name is defined. Since this name depends on the host name on which
the mailbox is located, we defined this type name as the address.

In Apostle, a user can have the name of mailbox which is different from the eddress of
the mailbox. For example, ’user’ can have 'user@cc.aoyama.junet’ for his mailbox name.
This name is independent from the host on which his mailbox is located. This type of
name is used the recipient name and for the sender name too.

A) The Recipient Name:

Messages to 'user@cc.aoyama.junet’ are sent to an appropriate component computer on
which his mailbox is located. This feature is implemented using an aliases database of
sendmail. This aliases database is the mailbox description file described in 4.1. IS has
‘aliases’” YP map as mailbox description file. This YP map includes the following list.

keisuke: keisukeQaoyama.cc.aoyama.junet
user: userQaoyama.cc.aoyama.junet

This map is shared by component computers using IS. Using this shared map, E-mail
system in Apostle converts the name of mailbox, like ’user@cc.aoyama.junet’, into the

address of mailbox, like 'user@aoyama.cc.aoyama.junet’.

B) The Sender Name:

The sender name is the name of user who writes the message. The name is placed on
"From:’ field in the message header. This name is generated by the configuration rules of

22

sendmail. Configuration rules are written in the file called ’sendmail.cf’. We implemented
a tool to aid to make this rules file, sendmail.cf. This tool is called ‘mailconf. Mailconf
creates the configuration file for sendmail.

We added the following declaration on a database for mailconf.

$control: genericfrom

With this declaration, mailconf creates the appropriate configuration file for sendmail.
This file has the functionality to control the headers of messages. Since the configuration
file contains the direction of genericfrom, "From:’ header of a message has no host name
on which the message is being created.

23

