TR#88-001

The Apostle System Overview

Technical Report No. 88-001

Masayuki Ida* and Keisuke Tanakal
Computer Science Research Lab.

Information Science Research Center

Aoyama Gakuin University
Address: 4-4-25 Shibuya, Shibuya-ku, Tokyo Japan 150

August 1988

* ida%aoyama.junet@relay.cs.net
t keisuke%cc.aoyama.junet@relay.cs.net

Abstract

The system Apostle is the kernel of the Trinity Initiative of Aoyama Gakuin Univer-
sity, aiming the integration of computer resources disparsed in three different campuses.
The overview of the system Apostle is described. Its design and an implementation of
us started from April 1988 by Computer Science Research lab. which was established
at the same time under the Information Science Research Center.

The harmonic connection concept employed to design Apostleis the concept to build a
distributed environment among widely interconnected computers or local area networks
in one organization. The characteristics of the harmonic connection is to provide one
virtual distributed OS with moderate comminication lines.

Local Area Network of each campus is connected with each other, and one loosely
coupled distributed computing environment is to be provided. In this environment,
traffics on the link for inter-campus connections are controlled to low. The dynamic
linking feature of Sun-4 4.0 assists to reduce traffic amount. The major components of
Apostle are the information server, the user interface, and the file cacher. The machines
involeved are a super computer, several SUN-4s, terminal servers, interfaces for personal
computers, a 53620 and others. Apostle also acts as a backbone for each LAN of several
sections.

1 The Trinity Initiative — the needs behind the Apostle

1.1 The Environment

The Trinity Initiative of Aoyama Gakuin University (AGU) started in April 1988 along
with the birth of Computer Science Research Laboratory (CSRL). The Trinity Initiative
1s a project inside the university to tie up the computing facilities which have dispersed
among campuses.

Aoyama Gakuin has 118 years history and has divisions from kindergarten to university
with graduate schools. The institution has as its objective a coherent education dedicated
to the spirit of the Methodist Church of the Christian faith. AGU has six colleges and
has three campuses, that is, Aoyama campus, Setagaya campus, and Atsugi campus. We
have about 19,000 students. 10,000 students belong to Aoyama, 2,000 to Setagaya, and
7,000 to Atsugi.

Fig. 1 shows the physical locations of these three campuses. The Aoyama campus has
the institution’s headquater and is located in the central part of Tokyo. The Setagaya
campus is for the college of Science and Engineering except for freshmen. The Atsugi
campus was built in 1982. Freshmen students of all other colleges and schools other than
that of Sci. and Engi. study for two years at Atsugi and move to Aoyama. All evening
division and graduate division students except those of Sci. and Engi. study exclusively
on the Aoyama campus.

The distance between Aoyama and Setagaya is 13 km (8 miles), Aoyama and Atsugi is
45km (30 miles), and Setagaya and Atsugi is 35km (22 miles).

1.2 The Characteristics of the Trinity Initiative and its needs

Information Science Research Center (ISRC) is in charge of the whole computing facilities
of AGU and has branches for each campus. At the Setagaya campus, the super computer
SX-1EA is scheduled to be there in October 1988. The Atsugi campus has hundreds of
- personal computers for teaching freshmen and introductory courses. The Aoyama campus
has the gateways for several networks including JUNET, and several commercial network
services. Computer Science Research Lab. (CSRL) under ISRC is located in the Aoyama
campus.

Fig. 2 shows the connection of the computing facilities. ISRC has experiences with the
DDX-P connection and then high speed digital line connection for 5 years for hierarchical
main frame TSS system, and N-1 link to University of Tokyo. We have been coped
with several different networking requests. Namely, personal computer connection, main
frame TSS connection and UNIX-oriented network. These types of connection should
have equal services for the three campuses of us. The Trinity Initiative is to connect these
three different persona with a uniform or a single network.

Fig. 3 shows the model of the Trinity Initiative. Trinity is the integration of three
campuses. And, Trinity is the integration of three levels of computing facilities, that is,
super-computer-TSS, workstations and personal computers. ’

Trinity = the integration of Aoyama, Setagaya, and Atsugi campus

Trinity = the integration of supercomputer TSS system, workstations, personal com-
puters

As for the needs of Apostle, we can count the following real problem to solve. We need
an uniform environment among the three campuses, since lots of users, i.e. the professors,
must migrate among the campuses mainly for teaching. There is a data that 30% of some
500 permanent faculty members (from research associate level to full professor level) have
their roles on two or three campuses. User wants to assume he is always in the same
environment and needs to access the same file system of him. Since almost all of them
are not computer science related professors, they need a simple , same and easy-to-use
environment. They need mailing and data retrieving facility at first. To cope with this
migration of persons, the simplest approach is to carry portable WS or PC by themselves.
But it is not realistic solution and is incomplete solution. The best way is to have a tight
connection of three LANs with very high speed lines (and provide adequate workstations
everywhere). But it’s not feasible for our case, since the total traffic seems to be not
so high to afford expensive connection. This is the reason why we need the harmonic
connection.

Sctagaya Aoyama

Figure 1: three campuses of Aoyama Gakuin University

Setagays Aoysms
- C
co

Atsugi

£ T 4

Figure 2: The connection of computers of three campuses

I —

LAN

."0'
& 15
LA e
o X3
k5 i
O:mummmme
A A
04 *e

LAN

Figure 3: The Trinity model

2 The Harmonic Connection
— A loosely coupled distributed OS —
2.1 Distributed OS and Network Integration

In general, there are increasing needs to have distributed OS or network integration tool
over the computers on one network. Distributed OS approach has the following charac-
teristics:

1. computers/workstations on one network form one virtual machine/OS.

And as the results of (1),
2. resources are (or can be) shared among workstations.
3. it can have some load balancing mechanisms.

And for users,
4. 1t provides an uniform access to his environment. (he can log-in any machine on the

network and can use the same environment with the same fashion.)
5. it can save/lessen the cost of maintenance/administration and the cost of training,
since each machine has a same mechanisms.

These characteristics/merits are attained with the costs of

(a) traffic overhead on the network, which is usually high, and

(b) cpu/memory/disk resource consumption overhead on each machine.

We count Mach[Accetta86] as typical distributed OS. In our paper, we neglect the sys-
tems structures as in butterfly[BBN87] which are originally designed for parallel processing
and are to be used as a whole. Mach is a distributed OS originally developed at CMU. It
has a process migration mechanism. It has a portable design and implemented on several
different machine architectures.

Meanwhile, network integration is mainly achieved with network file systems like NFS
[SUN86a]. And with further assistance of YP[SUNS86b], a system may act as one environ-
ment though each workstation is distinguishable. They are viewed as a connection facility
which shares environments. To have an convenient system, NFS assumes an Ethernet.

2.2 A Definition of the Harmonic Connection

We are thinking of the connection of the machines whose physical locations are quite
different but the organization to which they belong is the same and the machines are
shareable.

We define the harmonic connection, our concept of integrated system of location inde-
pendent computers, as a loosely coupled distributed OS.

The characteristics of the harmonic connection are;

1. It is for a distributed OS.

2. The whole component computers do not always reside in the same location.

3. A linking medium does not always be required a high bandwidth. Even if a medium is
slow, the system should work as convenient as possible. Implementation should cope
with variations of network media.

Table 1: A Comparison of several connection styles

zation

tightly loosely network communi- mail/
coupled coupled integration | cation message
tool routing
Example Mach The har- | NFS/YP rlogin, ftp, | uucp
monic con- telnet
nection
assumed media | dedicated synchronous || Ethernet Ethernet asynchronouq
bus, Ether- || line, X.25 line
net
traffic very high medium high low low
(occational)
connection tight medium medium loose loose
act as a whole Yes Yes No No No
assumed lo- | the same || different the same | the same | different
cations for each | cabinet, site Ethernet Ethernet site
machine room,...
assumed organi- | one one one multiple multiple

Table 1 shows the position of harmonic connection among several different connection
scheme; tight coupling, network integration, communication, and message routing.

The harmonic connection is the principal idea in the Apostle system and is also a tech-
nology which is general enough to apply on a different organization. We intend to have
a network for users whose accesses are locally dense. And the harmonic connection is

suitable for the trinity initiative.

3 System Architecture

3.1 Design Considerations

We count two types of considerations. One is on the management/administration, and
the other is on the extensibility.

A. Management/Administration issues

We point out the following items.

1. security consideration:
Since the users of Apostle are basically casual and assumed to be novice, the system
should be secure. Serious users are assumed to have their own machines which are
connected to Apostle . For those, Apostle acts as a backbone of the total network, and
is requested to be a secure communication channel. (each group like CSRL may have
a loose security inside it.)

2. name management:
Since there are lots of subdivisions in one organization, the name management facility
should have the same hierarchical structure. It should be separated from the super-
user of each component and divided.

3. compatibility with the current commercial OS:
The system should share the fruit of the current technology.

4. request of a user to integrate his own machine which is out of concern for the Trinity:
The system has no provision for this issue.

5. allocation of files: ,
The system is upward compatible with UNIX file system.

6. auditor:
Accesses and modifications of administrators should be auditorable.

B. Extensibility

We need the ability to freely upgrade the components without the destructive replacement
of the whole.

3.2 A System Configuration

Our requirements are summarized as follows.

A) Uniform OS: for user education, and for staff management/ training
B) Extensibility /Expandability: the ability to evolve/upgrade

C) Advancedness: International Grade and compatibility.

D) Moderate line to connect

The principles for implementations of the harmonic connection in the Trinity Initiative
are:

1. use a moderate line to connect.
The traffic inside the backbone should be minimized as possible. To do so, the process
the user invoked by typing a command or by daemon process, should be executed on
the machine he logged in and not on the machine he has a home environment. It is
not feasible for us to have a tight connection to cope with this assumption.
2. provide user an uniform environment.
User can access his home directory and the same environment automatically wherever
he login.
. compatibility with the commercial OS.
employ TCP/IP technology for LAN link to cope with different higher (application)
level protocols employed by different vendors.

=

With these principles, we design the system of us with the following decisions:

1. Use SUN-4 4.0 and SUN Internetwork Router [SUN87] which is for a physical and
data link layer under IP level over a synchronous line, for backbone connection. It
means this uniform OS becomes SUN OS, whose 4.0 or later version is said to be
compatible with AT&T UNIX System V R4.0 or later. Furthermore, 4.0 has dynamic
linking feature which reduces the size of executable codes. It saves the traffic amount.
Some data are in the later chapter.

2. Use two 64K NTT super digital lines to connect three campus gateway processors.
(Actually, we are trying to integrate them to Multi Media Muxes of N EC, which AGU
has been already using.)

3. As a whole, the three machines become one large machine from users point of view.

Fig. 4 shows the whole system. Three Sun-4s are the backbone of the system and
are tied together with the harmonic connection concept. Consult Fig.1 and Fig.2 for the
physical locations of them.

Wide Area Network

Setagaya T WS
I
‘ I]
SX-1EA
: . / ws| |Ws
I T SUN-4 .
TS Ws SUN-4 Aoyama
) \ I I I
Atsugi WS || WS i TS
. — SUN-1
TS WS * : component computer of Apostle

TS : Terminal Server

Figure 4: The system configuration

: super digital line between campuses

4 Design of Apostle

Apostle has three component computers. They are arranged to three campuses each by
each as shown in Fig. 4.

4.1 Requirement Analysis

Apostle is analyzed to have the following characteristics:

1. Since all accesses are defined to be secure, everyone is prohibited to access private files
of others. He may know who uses the system or what is his name in real life and so on.
But he cannot know even the existence of private files of others. To implement this
scheme, we adopt a restricted shell technique as a base. This restricted shell requires
the division of the whole file system into two categories; public files and private files.
Accesses to private files of others are inhibited by this shell.

2. Each user has one virtual environment. He is given his own environment independent
from his physical location. To achieve this scheme, information about his working
environment must be shared among components on the network.

3. The component computers in every campuses have the copies of the database, which
means a set of information about users. There is no needs to cause a traffic across
campuses to refer a record of the database.

. Private files are cached when the owner of them accesses from different component.

A person is not allowed to log-in from different place at the same time. This assump-

tion gives some merits to the implementation of Apostle. (File cacher described in 5.3

becomes simpler.)

6. The system will be implemented with faculty of Inter Process Communication (IPC).
The functions for Apostle are arranged to some sub systems or processes. These pro-
cesses have communication channel for IPC and their interfaces use Remote Procedure

Call (RPC) mechanism of SUN.

Ot

4.2 Structure of Apostle

Apostle consists of three sub systems; an information server (IS), a user interface (UI) and
a file cacher (FC).

The information server has three its alter ego on each component computer. Each ego
of the information server is called a replica of IS. The user interface is a shell described in
4.1(1). Each component computer has its own file cacher.

The information server provides a mechanism to share information of individuals among
component computers. A user interface provides a single virtual environment for each user.
A file cacher provides the method to access a private file even if a user loges in different
component. Fig. 5 shows the structure of Apostle. Each replica of IS is in each campus.
Ul interprets the command line given by a user. Ul judges whether the user is permitted
to execute the command and to access a file whose name is typed on a command line. For
this judgment, UI communicates with a replica of IS on the component computer on which

component computer

A &
(UD— ~—=(TD)
()
component component
computer computer
FC FC
IS
file
access refer
4 ¥
Ul) C ur

USER IS: Information Server
UI: User Interface
FC: File Cacher

Figure 5: The structure of Apostle

Ul itself works, and refers a record of the database. After this judgment, UI executes the
command and accesses the file. If the file is a private file of the user and it is located on
the different component, UI invokes a function of file cacher. FC transfers the copy of the
specified private file into the component which the user loges in. If the copy of the private
file was already transferred, FC omits the transfer and Ul accesses it immediately. With
the assumption of 4.1(5), this mechanism is not so difficult to implement. The detail is
described in 5.3.

10

5 Implementation of Apostle

5.1 The Information Server (IS)
5.1.1 Structure of the Information Server

Each component computer of Apostle has a replica of IS. Each replica has a copy of the
same database. The reason is as follows:

1. references to a record of the database are more frequent than change, and
2. the reference across the inter-campus link needs more cost than reference in one com-

ponent do.

Each replica communicates with each other, and keeps the copy up-to-date.
A user interface or other applications communicate with a replica to refer/change a
record of the database.

5.1.2 The Contents of the Database

IS provides the information about users. The database contains the following information:

® user name:
This name is a symbol given as a human-readable string. Every users on Apostle are
identified by this name. This name is effective to exchange messages with persons out
of Apostle.

e user account code:
This is another identifier for a user. A local operating system of each component uses
this code. Because a person is identified by his user name, he does not have to know
his account code. A system administrator may refer this code for his operations, such
as user accounting.

e information about user working environment:
This information tells where his private files are located, and where his mail box is.
Currently, three types of slots are arranged for this information; 1) home directory
for private files, 2) mail box to hold messages, and 3) group directory for private files
shared by several persons. These slots contain a) the name of a component on which
files are located, and b) the path name for a directory or a file.

e private information:
This is a personal information of user; the name of a user in his real life, his address,
and so on. Apostle itself does not need this information but some applications on
Apostle, such as directory service, may refer/use this information.

5.1.3 Database Access Mechanisms

The scheme to refer to a record is very simple. To access the database, UI or some
applications are only required to communicate with a replica of IS on the same component.

To keep the integrity of the database, the procedure to update an entry of the database
needs special treatment. To avoid the inconsistency between copies of the database and to

11

avoid a heavy load for checking the inconsistency or repairing it, we design the procedure
to update as follows:

—

. A replica of IS accepts the request to change an entry of the database.

2. The replica refers a record of his own copy of the database, and checks whether the
request is valid or not. If it is invalid, it will be rejected.

3. The replica verifies if all replicas are alive. When one of them is dead, the replica which
accepts the request, wait until all replicas become alive. In this case, the request does
not reflect immediately to the database. \

4. When all of replicas are alive, the replica tells them the new information, and every

entry in copies is changed.
5. If two requests are given at the same time and they conflict with each other, the

request will be rejected.

Creation and deletion of an entry are achieved with the same manner as above.

Only an owner (or an administrator) is permitted to update a record of the database.
A user identified by the user name in the record is defined to be the owner. No one is
permitted to change other’s records. But he can refer a record of others, if the owner
permits.

5.1.4 Extensions to YP
IS is implemented as extensions of SUN’s Yellow Pages (YP)[SUN86b]. SUN defined

several maps for YP protocol to share database for network administration. We define
new maps for IS of Apostle. These maps provide the translation of the name of user to
other contents of the database for Apostle described in 5.1.2.

Since YP protocol itself has no needs to be modified, the YP facility offered by SUN is
preserved. We modify ypserv(8) which is YP database server, and ypbind(§) which is YP
subsystem to find YP database server.

For the procedure to update a record of the database, we implement a new YP sub-
system, ypupdate. This new subsystem accepts the request to modify a record of the
database, and modifies all of copies of the database on each component computer. After
modification, it tells the YP database server, ypserv, that the database has been changed.

The relationship among these processes is shown in Fig. 6.

5.2 The User Interface (UI)
5.2.1 Classifications of Files:

UI assumes the division of the whole file system into the following categories:

1. public files:
Common commands and data files for these commands belong to this category. Also
directories to create temporary files are in this category.

2. private files:
This category includes all files located under the home directory of a user.

12

(ypserv ’

W

ypbind ypupdate

update

ypserv > ypsery

A 4
4 w update l l
(ypbind) Cypupdate) (ypbind) ('ypupdate)

[

find
refpr update
server

C application)

Figure 6: The relationship among subsystems of the information server

13

3. group files:
These files are shared by several persons. Files for some project should be shared by
members of the project. These files are in this category.

4. system files:
These files depend on the individual operating system of each component computer
of Apostle.

5.2.2 Allocation of Each File Class

Private/group files are located on one component computer on the network. When a user
wants to refer his private files on a different component, copies of files are transferred from
his home to a temporal directory on the component he loges in by the function of FC.
Since these files are cached, the next reference to the same file does not need the traffic
between components.

Each component has its own public files. Apostle itself does not provide the mechanism
to keep the consistency among public files on each component.

System files are managed in each component. System files on a component are indepen-
dent from those on other components. They are used for a local operating system on the
component. Every users, except for an administrator of a component computer, is not
permitted to access these files.

5.2.3 Access Rights

Four types of users are defined; 1) casual users, 2) administrators for one administrative
domain, 3) system administrators, and 4) directors of Apostle.

Casual users use public files and private/group files to work. They can create temporary
files under a public directory on a component computer he loges in. But they are not
permitted to modify public files prepared by the system. The access to private/group files
of others are prohibited.

Whole computing environment is divided into some administrative domain. Usual ad-
ministration, such as the registration of new users, is done by an administrator of the
administrative domain. This type of administrator is not permitted to modify files for
Apostle or files which depend on the local operating system of a component computer.

System administrators manage files for a local operating system. They maintain system
files to make a component computer or a network between components to work well.

Directors of Apostle control the whole system. They are permitted to access every files
on components. Commands or subsystems for Apostle are maintained by these directors.

Ul recognizes the type of a user, and judges the access right of the user. The classification
of the types of users makes the access more secure than traditional UNIX, and tasks for
maintenance of the system are arranged into three types of administrators.

5.2.4 Mechanisms

UI will be implemented through two steps.

14

The first step is the extension of shell program of UNIX. On this stage, all available
commands are registered into the command table. This table tells the name of a command,
the path name for the command, and its attribute. The attribute is a general description
for the command.

By using this table, UI determines which file is needed by a command, or whether the
command modifies the file. When a command line is given to UI by a user, firstly, Ul
checks the access right of the user for the file. When the user is permitted to access the
file and the file is a private file, Ul communicates with FC on the same component. FC
creates the copy of the private file and tells UI the path name of the shadow file. Then,
UI converts the name of file on the command line into the path name of the shadow file.
Finally, UI executes the command by using the command line converted.

In this scheme, the shell program evaluates only a command line and the name of a file
should be described explicitly on it. Therefore the access security is not enough, because
the name of a file is not converted and judgment for an access right is not done inside
processes.

The second step is the modification of system calls on which path name is given as a
parameter, such as open(2), stat(2). UI checks an access right through the communication
with IS, then converts the file name (if necessary), and executes the command. In the
primitive of a system call, the access right is checked, and file cacher is called. Dynamic
link editing for shared libraries supported by SunOS 4.0 or later is a candidate of the
substrate mechanism.

In this scheme, many faculties of the previous version of UI will move into primitives of
system calls. Every accesses become more secure, and file cache will be available even if
the path name of a file is not declared explicitly.

5.3 The File Cacher (FC)
5.3.1 Key Techniques

When a user loges in a component computer different from the component on which his
private files are located, the mechanism of FC is used for a quick response.

The access over inter-campus link makes the traffic too heavy. FC transfers the copy
of a private file from his home directory to a temporary directory on the component he
loges in. This transfer is done upon the first reference from Ul, and the next reference,
even it might be a destructive update, to the same file does not cause the traffic over
inter-campus link. When the user loges out, these copies are removed or some of them
are wrote back into the original files, if they are modified.

UI or some primitives for file handling call FC. Or each FC communicates with each
other, if necessary.

5.3.2 Copies Created by FC

There are two types of copies created by FC. One is the contents of a file, and another is
the attribute of a file. Usually, the size of the contents of a file is much lager than the size
of its attribute. Therefore, if a command needs only the attribute of a file, the contents is

15

not transferred. This mechanism includes the situation that the contents of a file is not
transferred when there is only a directory reference.

5.3.3 File Locking

Even if a private file is cached and accessed to modify, there is no need to lock the original
file, because of the assumption that a user is not permitted to log-in from different place
at the same time. But group files should be locked to avoid the confliction on the modi-
fication. When a group file is transferred for modification, a modification-inhibit mark is
flagged on the original files. Ul sends a request to clear cache when the user loges out or
he types a special command to clear cache. After FC receives these requests, it transfers
the copy into the original file and clears the modification-inhibit mark. Otherwise, if the
file is not modified, the file cacher omits the transfer.

16

6 Assessment for the Performance and the Dynamic
Behavior

6.1 Summary of Assumed Environment

The environment of Apostle is considered as follows;

1) It is for the researchers not for student education.

2) Since most of the real computer scientists have their own machines which are con-
nected to Apostle, the intended users of Apostle are the novices. For computer scientists,
Apostle acts as a backbone for his message/file transfer.

3) The total number of permanent professors including research associates are some 500.
The active users are estimated to 200.

4) The users seem to do the following job categories.

i) E-mail handling,.
ii) TSS front-end for SX super computer using a special interface which enables

the automatic conversion of UNIX command and host TSS command. (users are
only required to remember UNIX commands.)

ili) Editing of the textual files including personal computer files, UNIX files, and
host files. Code conversion, or media conversion are included.

iv) Reading and posting articles on JUNET news system.

v) Other operations including real-time message exchange, numeric operation,
software development.

5) Usage is locally dense totally.

6.2 Assessment

We must estimate how much is the traffic among campuses. If the total amount is too
large, response time for user is too bad, since the system characteristics has the principle
that we hire 64kbps as a design speed for the intercampus connection. 64kbps is fast
enough to have an occasional transfer, but is too slow to have an real time/interactive
use.

The following assumptions are obtained as of now.

1) the actual performance of 64kbps sync line seems to be 48k or less. It is a 5kbyte/sec
speed. Since we will use multi-medea-mux for multiplexed digital communication, we
cannot make performance better.

2) the size of a program seems to be 50kbytes or so. Then, transferring it will need
about 10 sec. It is not acceptable for interaction.

3) the size of average mail seems to be 4kbyte. it requires 1 sec to transfer.

4) the size of mail box seems to be 200kbyte. it requires 40 sec to transfer.

5) 80 percent of the command a user types is system given, not one prepared by himself.

6) but while, 80 percent of the files he refer is his private file, not system given ones.

17

There arises the following questions;

a) we should install special handling mechanism for mail reading/posting/saving?

b) we should need a kind of absenty at his home machine while he loges in at different
campus. do they need co-work?

c) what is needed to transfer upon login? a kind of pre-fetch is needed?

d) in what extent we should prepare for his environment at a different machine?

We must answer for the above questions. Since we are in the early stage of implemen-
tation, answers will be described in [CSRL&8b].

6.3 A Scenario Study

This section discusses the process during a conversation on Apostle. Figure 7 shows a
sample conversation with Apostle. The user logged-in at Atsugi campus, while his home
directory is at Aoyama campus.

After log-in, the whole environment of him is understood by the shell at Atsugi. And
the current directory is set to his home at Aoyama namely, /home/aoyama/m-ida. When
he typed ’cd’ command, the directory is copied to temporary directory for cache at Atsugi.
Files at the directory are not copied immediately to avoid the unneeded transfer. When
he invoke or refer his file, the contents of it are transferred. After that, the copy at Atsugi
will be used.

Details of the process is described in Fig. 7

6.4 Estimation of Dynamic-linking Effects

SunOS 4.0 has the dynamic-linking feature. It enables a dynamic library linking on
execution time. As a result, object size needed is minimized. This fact has great influence
to the dynamic behavior of Apostle. Fig. 8 shows the comparison of the sizes for /usr/ucb
between 4.0 and 3.2 on SUN4. We choose this comparison as a case. Fig. 8 tells the size
for each object of 4.0 is reduced to 50% of 3.2. Furthermore, if we neglect those which
are not recompiled to port them from 3.2 to 4.0, such as e,edit,ex,rcp,vi, the reduction (or
the effect of dynamic-linking) becomes larger. 4.0 version is about 40% of 3.2 version.

6.5 A Guideline for Applications

At first, the performance will deeply depend on the performance of FC. Since FC has
great roles and FC has two levels of caching principles, application should care about the
invocation or reference to the files. Unneeded refer may cause the performance worse.

Recommended managements are as follows;

1) Use MH as an recommended mail system. And Apostle provides a special treatment
for inbox access. (Basically Apostle will not copy inbox into the component he logs-in.)

1-1) There is a problem about the mail box manipulation. If the user uses ’mail’
command facility, the system automatically copies the whole message to /tmp directory.
(though after copied, he can have quick access.) If he has lots of messages to read, say, 50

18

4.2 BSD UNIX (Apostle)

Atsugi login: m-ida --- (1)
password: --- (2)
Last login: Tue Jun 14 11:05:01 from backabon

atsugi¥% cd x3j13; pwd -== (3)
/home/aoyama/m-ida/x3j13

atsugi) ls --- (4)
cl.mbox clos.mbox senddoc.1

cl-edit.mbox packmail x3j13.mbox

atsugi), packmail cl.mbox --- (5)
atsugil) ex /tmp/work.doc --- (6)
"work.doc" 213/4378

:r "keisuke/important.doc --- (7

access denied

"important.doc'" No such file or directory

:!1s /usr/spool --- (8)
access denied

/usr/spool not found

:q!

atsugi¥, logout --- (9)

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)

Login process gets user name.

Login process consults the database on Atsugi component and gets correct
password of the user, communicating IS. Then, checks whether the password
is valid and accepts. After that his top level directory contents are transferred.
Upon typing the 'cd’ command, FC transfers the contents of the current
directory from his home host Aoyama to the local host Atsugi.

FC refers locally the contents of the directory. No tramsmit of the file
contents between hosts is occured.

The contents of the file packmail’ and ’cl.mbox’ are transferred by FC.

And then executed.

Accesses the local file ’/tmp/work.doc’. No network access is occured.

UI inhibits his illegal access to files owned by others.

UI inhibits his illegal access to system files.

FC makes synchronization between cache and original files.

Figure 7: example of a conversation

19

or 100 or more, and if he has no will to read them, there arise a message copy everytime
and causes unneeded transfer between different components. The system Apostle itself
has no provision for the situation. The policy of this system is 'mail command system is
not the standard mailing facility but use mh instead.’

1-2) When MH, he must use his home directory. His directory for inbox will affect a lot
for access frequency. It might be too much traffic without any special provision.

2) There is no need to limit multiple login on the same component. A same-time-login
from different site is prohibited.

3) There is no need to have a special consideration on reading/posting articles for news
system. News articles are stored locally. Archives of each articles are in some extent
stored locally. Main archives are on the Aoyama machine.

4) Classification of file semantics like objects, general files, messages (news, private mails,
interactive messages) is under consideration.

5) Apostle is NOT a full distributed OS. How ’w’ command walk? Can he see all the
persons of three machine? At least we will provide more suitable command for such
operation.

6) Mail address of each user is uniformly set to ’foo@cc.aoyama’. Mail system is altered
to cope with this.

20

SUN 4 /usr/ucb

compared at 1988.08.01

4.0 3.2
122880 Mail 163840 Mail
2504 ©biff 40960 biff
120 ccat
11856 checknr 49152 checknr
40960 chsh
16384 clear 24576 clear
4488 colcrt 40960 colcrt
3456 colrm 24576 colrm
40960 compact
24576 compress 49152 compress
15792 ctags 49152 ctags
450560 dbx 425984 dbx
196608 e 196608 e
196608 edit 196608 edit
32768 error 98304 error
196608 ex 196608 ex
4400 expand 40960 expand
57344 eyacc
24576 finger 90112 finger
16384 fmt 40960 fmt
3416 fold 40960 fold
3832 from 65536 from
7088 fsplit
81920 ftp 114688 ftp
3352 gcore 49152 gcore
32768 gprof 57344 gprof
3424 groups 73728 groups
3272 head 40960 head
6608 1last 73728 last
16384 lastcomm 73728 lastcomm
4848 leave 49152 1leave
16384 logger
32768 1pq 73728 1pq
24576 1pr 90112 1pr
24576 1lprm 90112 1lprm
16384 1lptest
122880 mail 163840 mail
24576 man 49152 man
6072 mkstr 40960 mkstr
49152 more 57344 more
32768 netstat 90112 netstat
49152 page 57344 page
40960 pmerge
1568 printenv 32768 printenv
655636 prmail
40960 pti
139264 pxp

o © o

O WM OKRRLRHLOO

QO OO

OO0

©C O QC OO0 C

(=]

CO0OO0OO0OO0O0OO0CO0

.061

.241

.667
.110
.141

.500
.321
.068
.000
.000
.333
.000
.107

.273
.400
.083
.058

714
.068

571
046

.080
.076
.222
.099

.444
.273
.273

.750
.500
.148
.857
.364
.857

.048

when ommiting eight cases which have the same size

(e,edit,ex,rcp,vgrind,vi,view,which)

Figure 8: Dynamic Linking Reduces the Size - Case for /usr/ucb

|
|
|
!
|
|
!
I
|
!
|
|
!
|
|
|
|
!
|
|
]
|
I
|
|
]
|
I
|
]
|
!
|
|
!
|
|
!
I
|
|
|
!
|
|
]
i

4.0 3.2
65536 pxref
24576 quota 90112 quota 0.273
90112 rcp 90112 rcp 1.000
3568 rdate 655636 rdate 0.054
65536 rdist 131072 rdist 0.500
32768 reset 57344 reset 0.571
24576 rlogin 81920 rlogin 0.300
16384 rsh 73728 «rsh 0.222
16384 rup 81920 zrup 0.200
5632 ruptime 40960 ruptime 0.138
16384 rusers 81920 rusers 0.200
3632 rwho 40960 rwho 0.089
24576 sccs 90112 sccs 0.273
16384 script 40960 script 0.400
3376 soelim 40960 soelim 0.082
4160 strings 40960 strings 0.102
5912 symorder 65536 symorder 0.090
65536 syslog
16384 tail 40960 tail 0.400
40960 talk 98304 talk 0.417
4616 tcopy
32768 telnet 90112 telnet 0.364
24576 tftp 81920 tftp 0.300
32768 tset 57344 tset 0.571
24576 ul 49152 ul 0.500
40960 uncompact
24576 uncompress 49152 uncompress 0.500
2952 unexpand 40960 unexpand 0.072
7800 unifdef 40960 unifdef 0.190
24576 uptime 49152 uptime 0.500
3616 users 40960 users 0.088
24576 vacation 73728 vacation 0.333
2871 vgrind 2871 vgrind 1.000
196608 vi 196608 vi 1.000
196608 view 196608 view 1.000
24576 vwmstat 49152 wmstat 0.500
24576 w 49152 w 0.500
3328 wc 40960 wc 0.081
3256 what 40960 what 0.079
16384 whatis 40960 whatis 0.400
16384 whereis 40960 whereis 0.400
987 which 987 which 1.000
1504 whoami 65536 whoami 0.023
3336 whois 65536 whois 0.051
8544 xstr 49152 xstr 0.174
16384 yes 32768 yes 0.500
24576 zcat 49152 zcat 0.500
3001370 5861138 0.512
37992 74191 0.512
1924360 4784128 0.402
27104 67382 0.402

21

Table 2: Expected merits over several connection styles

tightly loosely network communi- mail/
coupled coupled integration | cation message
tool routing
assumed media | leased line DDX-P, or | leased line | leased line | dial-up line
super digi-
tal
initial cost very high medium high high low
running low low/medium || low high high
cost/message

7 Final Remarks

Since the project started in April 1988, we had not yet finished the whole design and
implementation, and we cannot have a review and an evaluation.

Table 2 shows an estimation of the comparison of five types of connections concerning
the cost assessment. As shown in the table, we expect the cost merit over tight connection
though it can provide a resemble environment as tight connection.

The Trinity Initiative is a three year plan and the first version of Apostle is scheduled to
finish at the end of March 1989. The details of Apostle will be published as [CSRLSSb].
We will have a schedule to write papers about the result in the next year.

The harmonic connection itself is a quite general enough to apply other cases. So, we
would like to find any other applicable cases.

A cknowledgment

The authors would like to express their gratitude to Prof. Hiroshi Oyachi (director, ISRC
of AGU), Prof. Hisao Nishioka (president, AGU), and Prof. Kinjiro Ohki (chancellor,
Aoyama Gakuin) and the office staffs of ISRC for their continuous encouragements. Also
thanks are due to JUNET/WIDE research group members and Prof. Haruhisa Ishida of

University of Tokyo for their technical communications.

References

[Accetta86] M.Accetta, R.Baron, W.Bolosky, D.Golub, R.Rashid, A.Tevanian, and M.
Younge, "Mach: A New Kernel Foundation for UNIX Development,” in Proc. of
USENIX 1986 summer conf. pp93-112, 1986.

[BBN87] BBN Advanced Computers Inc. ’Butterfly Product Overview,” Oct.14 1987.

[CSRL88a] Masayuki Ida and Keisuke Tanaka, 'The Harmonic Connection Concept in
the Trinity Initiative of Aoyama Gakuin University’in proc. of JCCW’88 pp111-120
July. 1988.

22

[CSRL88b] Keisuke Tanaka and Masayuki Ida *The Apostle System Reference Manual,’
CSRL Technical Report #88-002, Nov. 1988. (to be appeared)

[Lyon84] B. Lyon, ‘Sun Remote Procedure Call Specification,’ Technical Report, 1984, Sun
Microsystems, Inc.

[Postel81a] J. Postel, 'Transmission Control Protocol,” RFC793, Sep. 1981.

[Postel81b] J. Postel, ’Internet Protocol,” RFC791, Sep. 1981.

[SUN86a] Sun Microsystems Inc. ’Network File System Protocol Specification,’ Feb. 1986

[SUN86b] Sun Microsystems Inc. 'The Yellow Pages Protocol Specification,’ Feb. 1986

[SUN87] Sun Microsystems Inc. ’SunLink Internetwork Router System Administration

Guzde,’ Jul. 1987

23

