Seogwipo Cheju July ‘7-9, 1988

The Harmonic Connection Concept in the Trinity Initiative
of Aoyama Gakuin University

Masayuki Ida* and Keisuke Tanaka!

Computer Science Reserach Lab.

Information Science Research Center
Aoyama Gakuin University
Address: 4-4-25 Shibuya, Shibuya-ku, Tokyo Japan 150

Abstract

This paper describes the harmonic connection concept, and its design and an implementation of us

starting from April 1933 on.

The harmeonic connection is the concept to build a distributed environment among widely inter-

connected computers or local area networks, in one organization. The characteristic of the harmonic

connection is to provide one virtual distributed OS with moderate comminication lines.

Apostle for the Trinity Initiative of Aoyama Gakuin University is a case of the harmonic connectién

and is currently under developement. Apostle connects three campuses of the university. Local Area

Network of each campus is connected with each other, and one loosely coupled distributed computing

environment is provided. In this environment, traffic on the link for inter-campus connections is con-

trolled to low. The major components of Apostle are the information server, the user interface, and the

file cacher.

1 The Harmonic Connection
— A loosely coupled distributed OS —

1.1 Distributed OS and Network
Integration

There are increasing needs to have distributed OS
or network integration tool over the computers on
one network. Distributed OS approach has the
following characteristics:

1. computers/workstations on one network
form one virtual machine/OS.
And as the results of (1),
2. resources are (or can be) shared among work-
stations.

* ida%aoyama.junetQrelay.cs.net
t keisuke%cc.aoyama.junetQrelay.cs.net

3. it can have some load balancing mechanisms.

And for users,

4. it provides an uniform access to his environ-
ment. (he can log-in any machine on the net-
work and can use the same environment with
the same fashion.)

5. it can save/lessen the cost of mainte-
nance/administration and the cost of train-
ing, since each machine has a same mecha-
nisms.

These characteristics/merits are attained with
the costs of

(a) traffic overhead on the network, which is
usually high, and

(b) cpu/memory/disk resource consumption
overhead on each machine.

- 111 -

JCCW'88

We count Mach[Accetta86] as typical dis-
tributed OS. In our paper, we neglect the sys-
tems structures as in butterfly(BBN87] which are
originally designed for parallel processing and are
‘to be used as a whole. Mach is a distributed OS
originally developed at CMU. It has a process mi-
gration mechanism. It has a portable design and
implemented on several different machine archi-
tectures.

Meanwhile, network integration is main-

.ly achieved with network file systems like
NFS[SUN86a]. And with further assistance of
YP[SUNS86b], a system may act as one environ-
ment though each workstation is distinguishable.
They are viewed as a connection facility which
shares environments. To have an convenient sys-
tem, NFS assumes an ethernet.

1.2 A Definition of the Harmonic
Connection

We are thinking of the connection of the machines
whose physical locations are quite different but
the organization to which they belong is the same
and the machines are shareable.

We define the harmonic connection, our con-
cept of integrated system of location independent
computers, as a loosely coupled distributed OS.

The characteristics of the harmonic connection
are;

1. It is for a distributed OS.

2. the whole component computers do not al-
ways reside in the same location.

3. a linking medium does not always be re-

 quired a high bandwidth. Even if a medium
is slow, the system should work as conve-
nient as possible. Implementation should
cope with variations of network media.

Table 1 shows the position of harmonic connec-
tion among several different connection scheme;
tight coupling, network integration, communica-
tion, and message routing.

2 The Trinity Initiative

2.1 The Environment

— a case for the harmonic connection -

The harmonic connection concept is the heart of
the trinity initiative of Aoyama Gakuin Univer-
sity (AGU), and is also a generally applicable con-
cept for a distributed environment inside one in-
stitution.

The trinity initiative started in April 1988 and
is a project inside the university to tie up the
computing facilities which have dispersed among
campuses.

Aoyama Gakuin has 118 years history and has
divisions from kindergarten to university with
graduate schools. The institution has as its objec-
tive a coherent education dedicated to the spirit
of the Methodist Church of the Christian fajth.
AGU has six colleges and has three campuses,
that is, Aoyama campus, Setagaya campus, and
Atsugi campus. We have about 19,000 students.
10,000 students belong to Aoyama, 2,000 to Se-
tagaya, and 7,000 to Atsugi. Fig. 1 shows the
physical locations of these three campuses. The
Aoyama campus has the institution’s headquater
and is located in the central part of Tokyo. The
Setagaya campus is for the college of Science and
Engineering except for freshmen. The Atsugi
campus was built in 1982. Freshmen students of
all other colleges and schools study for two years
at Atsugi and move to Aoyama. All evening Di-
vision and Graduate Division students study ex-
clusively on the Aoyama campus.

The distance between Aoyama and Setagaya is
13 km, Aoyama and Atsugi is 45km, and Setagaya
and Atsugi is 35km.

2.2 The Characteristics of the
Trinity Initiative and its needs

Information Science Research Center (ISRC) is
in charge of the whole computing facilities of
AGU and has branches for each campus. At the
Setagaya campus, the super computer SX-1EA
is scheduled to be there in October 1988. The
Atsugi campus has hundreds of personal com-
puters for teaching freshmen and introductory
courses. The Aoyama campus has the gateways

-112 -

for several networks including JUNET, and sev-
eral commercial network services. Computer Sci-
ence Research Lab. (CSRL), our group, is newly
formed in April 1988 and is located in the Aoyama
campus. Fig. 2 shows the connection of the
computing facilities. ISRC has experiences with
the DDX-P connection and then high speed dig-
ital line connection for 5 years for hierarchical
main frame TSS system, and N-1 link to Univer-
sity of Tokyo. We have been coped with several
different networking requests. Namely, personal
computer connection, main frame TSS connection
and UNIX-oriented network. These types of con-
nection should have equal services' for the three
campuses of us. The Trinity Initiative is to con-
nect these three different persona with a uniform
or a single network. Fig. 3 shows the model of
the Trinity Initiative. Trinity is the integration
of three campuses. And, Trinity is the integra-
tion of three levels of computing facilities, that is,
super-computer-TSS, workstations and personal
computers.

.We need an uniform environment among the

three campuses. Because lots of users, i.e. the
professors, must migrate among the campuses.
There is a data that 30% of some 500 permanent
faculty members have their roles on two or three
campuses. They need the same environment and
they need to access the same file system. Since
almost all of them are not computer science re-
lated professors, they need a simple , same and
easy to use environment. They need mailing and
data retrieving facility at first. To cope with this
migration of persons, the simplest approach is to
carry portable WS or PC by themselves. But it
is not realistic solution. The best way is to have
a tight connection of three LANs with very high
speed lines (and provide adequate workstations
everywhere). But its not feasible for our case,
since the total traflic seems to be not so high to
afford expensive connection. This is the reason
why we need the harmonic connection.

3 System Architecture

3.1 Design Considerations

We consider two types of considerations. One
is on the management/administration, and the

Seogwipo Cheju July. 7-9, 1988

Figure 1: three campuses of Aoyama Gakuin Uni-

versity

Setagaya Aoysma
I computer l SShu
cc

Atsugi

Figure 2: The connection of computers of three
campuses

LAN LAN

Figure 3: The Trinity model

- 113 —

JCCW’'88

other is on the extensibility.

" A. Management/Administration issues

We point out the followiné items.

1. security consideration:
Since the users are basically casual, the sys-
tem should be secure.

2. name management:
Since there are lots of subdivisions in one
organization, the name management facility
should have the same hierarchical structure.
It should be separated from 'root’ and di-
vided.

3. compatibility with the current commercial
0S:
The system should share the fruit of the cur-
rent technology.

4. request of a user to integrate his own machine
which is out of concern for the Trinity:
The system has no provision for this issue.

5. allocation of files:
The system is upward compatible with UNIX
file system.

6. auditor:
Accesses and modifications of administrators
should be auditorable.

B. Extensibility

We need the ability to freely upgrade the compo-
nents without the destructive replacement of the
whole.

3.2 A System Configuration

Our requirements are summarized as follows.

A) Uniform OS: for user education, and for staff
management/training

B) Extensibility/Expandability: the ability to
evolve/upgrade

C) Advancedness:
Better environment/software. International
Grade and compatibility. high performance

D) Moderate line to connect

The principles for implementations of the har-
monic connection in the Trinity Initiative are:

1. use a moderate line to connect.
The traflic inside the backbone should be
minimized as possible. To do so, the pro-
cess the user invoked by typing a command
or by daemon process, should be executed on
the machine he logged in and not on the ma-
chine he has a home environment. It is not
feasible for us to have a tight connection to

cope with this assumption.
2. provide user an uniform environment.

User can access his home directory and the
same environment automatically wherever

he login.
3. compatibility with the commercial OS.
4. employ TCP/IP technology for LAN link to

cope with different higher (application) level
protocols employed by different vendors.

With these principles, we design the system of
us with the following decisions:

1. Use SUN-4 and SUN Internetwork Router
[SUN87] which is for a physical and data link
layer under IP level over a synchronous line,
for backbone connection. It means this uni-
form OS becomes SUN OS, whose 4.0 or later

version is said to be compatible with AT&T

UNIX System V R4.0 or later.
2. Use two 64K NTT super digital lines to con-

nect three campus gateway processors. (Ac-
tually, we are trying to integrate them to
Multi Media Muxes of NEC, which AGU is
already using.)

3. As a whole, the three machines become one
large machine from users point of view.

Fig. 4 shows the whole system. Three Sun-
4g are the backbone of the system and are tied
together with the harmonic connection concept.

4 Design of Apostle

The system which we are implementing is called
'Apostle’. Apostle has three component comput-
ers. They are arranged to three campuses each
by each as shown in Flg. 4.

4.1 Requirement Analysis

Apostle is analyzed to have the following charac-
teristics:

- 114 -

Wide Area Network

Setagaya 1
X-1EA <
el (] [/
[xs] [ws] 5UN-A Aoyama
Atsugi
SUN-4 other LAN
TS| |WS

Figure 4: The system configuration

. Since all accesses are defined to be secure,

everyone is prohibited to access private files
of others. He may know who uses the system
or what is his name in real life and so on. But
he cannot know even the existence of private
files of others. To implement this scheme,
we adopt a restricted shell technique as a
base. This restricted shell requires the di-
vision of the whole file system into two cate-
gories; public files and private files. Accesses
to private files of others are inhibited by this
shell.

. Each user has one virtual environment. He is

given his own environment independent from
his physical location. To achieve this scheme,
information about his working environment
must be shared among components on the
network.

. The component computers in every cam-

_puses have the copies of the database, which

means a set of information about users.
There is no needs to cause a traffic across
campuses to refer a record of the database.

. Private files are cached when the owner of

them accesses from different component.

. A person is not allowed to log-in from dif-

ferent place at the same time. This assump-
tion gives some merits to the implementation
of Apostle. (File cacher described in 5.3 be-

comes simpler.)

. The system will be implemented with fac-

ulty of Inter Process Communication (IPC).
The functions for Apostle are arranged to

Seogwipo Cheju July.7-9, 1988

some sub systems or processes. These pro-
cesses has communication channel for IPC

and their interface uses Remote Procedure
Call (RPC) mechanism.

4.2 Structure of Apostle

Apostle consists of three sub systems; an infor-
mation server (IS), a user interface (UI) and a
file cacher (FC).

The information server has three his alter ego
on each component computer. Each ego of the
information server is called a replica of IS. The
user interface is a shell described in 4.1(1). Each
component computer has its own file cacher.

An information server provides a mechanism
to share information of individuals among compo-
nent computers. A user interface provides a single
virtual environment for each user. A file cacher
provides the method to access a private file even if
a user loges in different component. Fig. 5 shows
the structure of Apostle. Each replica of IS is
in each campus. UI interprets the command line
given by a user. UI judges whether the user is per-
mitted to execute the command and to access a
file whose name is typed on a command line. For
this judgment, Ul communicates with a replica of
IS on the component computer on which Ul itself
works, and refers a record of the database. Af-
ter this judgment, Ul executes the command and
accesses the file. If the file is a private file of the
user and it is located on the different component,
UI invokes a function of file cacher. FC trans-
fers the copy of the specified private file into the
component which the user loges in. If the copy of
the private file was already transferred, FC omits
the transfer and UI accesses it immediately. With
the assumption of 4.1(5), this mechanism is not
so difficult to implement. The detail is described
in 5.3.

5 Implementation of Apostle

5.1 The Information Server

5.1.1 Structure of the Information Server

Each component computer of Apostle has a
replica of IS. Each replica has the copy of the
same database. The reason is as follows:

- 115 -

JCCW’88

component computer

CFSO

Ul Y UI
S
sampetn mperen
! H
FC FC
IS
file
access refer
UI Ul
L
USER

Figure 5: The structure of Apostle

1. references to a record of the database is more

frequent than change, and
2. the reference across the inter-campus link

needs more cost than reference in one com-
ponent do.

Each replica communicates with each other, and
keeps the copy up-to-date.

A user interface or other applications commu-
nicate with a replica to refer/change a record of
the database.

5.1.2 The Contents of the Database

The information server provides the information
about users. The database contains the following
information:

® user name:
This name is a symbol given as a human-
readable string. Every users on A postle are
identified by this name. This name is effec-
tive to exchange messages with persons out

of Apostle.
® user account code:

This is another identifier for a user. A lo-
cal operating system of each component uses
this code. Because a person is identified by
his user name, he does not have to know his
account code. A system administrator may
refer this code for his operations, such as user
accounting,.

e information about user working environ-
ment:
This information tells where his private files
are located, and where his mail box is. Cur-
rently, three types of slots are arranged for
this information; 1) home directory for pri-
vate files, 2) mail box to hold messages, and
3) group directory for private files of several
persons. These slots contain a) the name of
a component on which files are located, and
b) the path name for a directory or a file.

e private information:
This is a personal information of user; the
name of a user in his real life, his address,
and so on. Apostle itselfl does not need this
information but some applications on Apos-
tle, such as directory service, may refer/use
this information.

5.1.3 Database Access Mechanisms

The scheme to refer to a record is very simple.
To access the database, UI or some applications
are only required to communicate with a replica
of IS on the same component.

To keep the integrity of the database, the pro-
cedure to update an entry of the database needs
special treatment. To avoid the inconsistency be-
tween copies of the database and to avoid a heavy
load for checking the inconsistency or repairing it,
we design the procedure to update as follows:

1. A replica of IS accepts the request to change
an entry of the database.

2. The replica refers a record of his own copy
of the database, and checks whether the re-
quest is valid or not. If it is invalid, it will
be rejected.

3. The replica verifies if all replicas are alive.
When one of them is dead, the replica which
accepts the request, wait until all replicas be-
come alive. In this case, the request does not
reflect immediately to the database.

4. When all of replicas are alive, the replica tells
them the new information, and every entry
in copies is changed.

5. If two requests are given at the same time
and they conflict with each other, the request
will be rejected.

-116 -

Creation and deletion of an entry is achieved with
the same manner as above.)

Only an owner (or an administrator) is permit-
ted to update a record of the database. A user
identified by the user name in the record is de-
fined to be the owner. No one is permitted to
change other's records. But he can refer a record
of others, if the owner permits.

5.1.4 Extensions to YP

The information server is implemented as exten-
sions of SUN's Yellow Pages (YP)[SUN86b]. SUN
defined several maps for YP protocol to share
database for network administration. We define
new maps for the information server of Apostle.
These maps provide the translation of the name of
user to other contents of the database for Apostle
described in 5.1.2. /

Since YP protocols itself has no needs to be
modified, the YP facility offered by SUN is pre-
served. We modify ypserv(8), which is YP
database server, and ypdind(8), which is YP sub-
system to find YP database server.

For the procedure to update a record of the
database, we implement a new YP subsystem,
ypupdate. This new subsystem accepts the re-
quest to modify a record of the database, and
modifies all of copies of the database on each com-
ponent computer. After modification, it tells the
YP database server, ypservy, that the database has
been changed.

The relationship among these processes is
shown in Fig. 6.

5.2 The User Interface
5.2.1 Classifications of Files

The user interface assumes the division of the
whole file system into the following categories:

1. public files:
Common commands and data files for these
commands belong to this category. Also di-
rectories to create temporary files are in this
category.

2. private files:
This category includes all files located under

the home directory of a user.

Seogwipo Cheju July 7-9, 1988

ypserv

update

ypserv

ypserv

update

pte
[T

application

Figure 6: The structure of the information server

3. group files:
These files are shared by several persons.
Files for some project should be shared by
members of the project. These files are in
this category.

4. system files:
These files depend on the individual operat-
ing system of each component computer of
Apostle.

5.2.2 Allocation of Each File Class

Private/group files are located on one component
computer on the network. When a user wants to
refer his private files on a different component,
copies of files are transferred from his home to a
temporal directory on the component he loges in
by the function of file cacher. Since these files are
cached, the next reference to the same file does
not need the traffic between components.

Each component has its own public files. Apos-
tle itself does not provide the mechanism to keep
the consistency among public files on each com-
ponent.

System files are managed in each component.
System files on a component are independent
from those on other components. They are used
for a local operating system on the component.
Every users, except for an administrator of a com-
ponent computer, is not permitted to access these
files.

-117 -

JCCcw'ss

5.2.3 Access Rights

Four types of users are defined; 1) casual users, 2)
administrators for one administrative domain, 3)
system administrators, and 4) directors of Apos-
tle.

Casual users use public files and private/group
files to work. They can create temporary files un-
der a public directory on a component computer
he loges in. But they are not permitted to modify
public files prepared by the system. The access
to private/group files of others are prohibited.

Whole computing environment is divided into
some administrative domain. Usual administra-
tion, such as the registration of new users, is
done by an administrator of the administrative
domain. This type of administrator is not per-
mitted to modify files for Apostle or files which
depend on the local operating system of a com-
ponent computer.

System administrators manage files for a local
operating system. They maintain system files to
make a component computer or a network be-
tween components to work well.

Directors of Apostle control the whole system.
They are permitted to access every files on com-
ponents. Commands or subsystems for Apostle
are maintained by these directors.

UI recognizes the type of a user, and judges
the access right of the user. The classification of
the types of users makes the access more secure
than traditional UNIX, and tasks for maintenance
of the system are arranged into three types of
administrators.

5.2.4 Mechanisms

UI will be implemented through two steps.

The first step is the extension of shell program
of UNIX. On this stage, all available commands
are registered into the command table. This table
tells the name of a command, the path name for
the command, and its attribute. The attribute is
a general description for the command.

By using this table, UI determines which file
is needed by a command, or whether the com-
mand modifies the file. When a command line is
given to Ul by a user, firstly, UI checks the access
right of the user for the file. When the user is

permitted to access the file and the file is a pri-
vate file, Ul communicates with file cacher on the
same component. File cacher creates the copy of
the private file and tells UI the path name of the
shadow file. Then, UI converts the name of file
on the command line into the path name of the
shadow file. Finally, UI executes the command
by using the command line converted.

In this scheme, the shell program evaluates only
a command line and the name of a file should be
described explicitly on it. Therefore the access
security is not enough, because the name of a
file is not converted and judgment for an access
right is not done inside processes. The second
step cooperates this program.

The second step is the modification of system
calls on which path name is given as a param-
eter, such as open(2), stat(2). UI checks an ac-
cessright through the communication with the IS,
then converts the file name (if necessary), and ex-
ecutes the command. In the primitive of a system
call, the access right is checked, and file cacher is
called. Dynamic link editing for shared libraries
supported by SunOS 4.0 or later is a candidate of
the substrate mechanism.

In this scheme, many faculties of the previous
version of UI will move into primitives of system
calls. Every accesses become more secure, and
file cache will be available even if the path name
of a file is not declared explicitly.

5.3 The File Cacher
5.3.1 Key Techniques

When a user loges in a component computer dif-
ferent from the component on which his private
files are located, the mechanism of file cacher is
used for a rapid response.

The access over inter-campus link makes the
traffic too heavy. The file cacher transfers the
copy of a private file from his home directory to
a temporary directory the component he loges in.
This transfer is done upon the first reference from
the user interface, and the next reference, even it
might be a destructive update, to the same file
does not cause the traffic over inter-campus link.
When the user loges out, these copies are removed

. or some of them are wrote back into the original

-118 -

files, if they are modified.

The user interface or some primitives for file
handling call the file cacher. Or each file cacher
communicates with each other, if necessary.

5.3.2 Copies Created by the File Cacher

There are two types of copies created by the file
cacher. One is the contents of a file, and another
is the attribute of a file. Usually, the size of the
contents of a file is much lager than the size of its
attribute. Therefore, if a command needs only
the attribute of a file, the contents is not trans-
ferred.

5.3.3 File Locking

Even if a private file is cached and accessed to
modify, there is no need to lock the original file,
because of the assumption that a user is not
permitted to log-in from different place at the
same time. But group files should be locked to
avoid the confliction on the modification. When
a group file is transferred for modification, a
modification-inhibit mark is flagged on the orig-
inal files. The UI sends a request to clear cache
when the user loges out or he types a special com-
mand to clear cache. After the file cacher re-
ceives these request, it transfers the copy into the
original file and clears the modification-inhibit
mark. Otherwise, if the file is not modified, the
file cacher omits the transfer.

6 Final Remarks

Since the project started in April 1988, we had
not yet finished the whole design and implemen-
tation, and we cannot have a review and an eval-
uation.

Table 2 shows an estimation of the compari-
son of five types of connections concerning the
cost assessment. As shown in the table, we ex-
pect the cost merit over tight connection though
it can provide a resemble environment as tight
connection.

The Trinity Initiative is a three year plan and
The first version of Apostle is scheduled to finish
at the end of March 1989. The details of Apostle
will be published as [CSRL88a,CSRL88b]. We

Seogwipo Cheju July 7-9, 1988

will have a schedule to write papers about the
result in the next year.

The harmonic connection itself is a quite gen-
eral enough to apply other cases. So, we would
like to find any other applicable cases,

Acknowledgment

The authors would like to express their gratitude
to Prof. Hiroshi Oyachi (director, ISRC of AGU),
Prof. Hisao Nishioka (president, AGU), and Prof.
Kinjiro Ohki (chancellor, Aoyama Gakuin) for
their continuous encouragements. Also thanks
are due to JUNET/WIDE research group mem-
bers and Prof. Haruhisa Ishida of University of
Tokyo for their technical communications.,

References

[Accetta86) M.Accetta, R.Baron, W.Bolosky,
D.Golub, R.Rashid, A.Tevanian, and M.
Younge, 'Mach: A New Kernel Foundation
for UNIX Development,’in Proc. of USENIX

1986 summer conf. pp93-112, 1986.
[BBN87] BBN Advanced Computers Inc. 'But-

terfly Product Overview,’ Oct.14 1987.
[CSRL88a] Masayuki Ida and Keisuke Tanaka,

'The Apostle System Overview,’ CSRL Tech-
nical Report #88-001, Aug. 1988.

[CSRL88b] Keisuke Tanaka and Masayuki Ida

'The Apostle System Referrence Manual,’
CSRL Technical Report #88-002, Aug. 1988.

[Lyon84] B. Lyon, ’Sun Remote Procedure Call
Specification,’ Technical Report, 1984, Sun
Microsystems, Inc.

[Postel81a] I. Postel, *Transmission Control Pro- -

tocol,” RFC793, Sep. 1981.
[Postel81b] J. Postel, ’Internet
RFC791, Sep. 1981.

[SUN86a] Sun Microsystems Inc. 'Networkt File
System Protocol Specification,’ Feb. 1986
[SUN86b] Sun Microsystems Inc. ’The Yellow
Pages Protocol Specification,’ Feb. 1986
[SUN87] Sun Microsystems Inc. ’SunLink In-
ternetwork Router System Administration

Guide,’ Jul. 1987

- 119 -

Protocol,’ -, ;

