BAVI MY 2 7THERBE 2B RIB/BILE

4A-4

On the Principles behind Object-oriented Facilities

of Common Lisp for Alien Languages

Masayuki Ida, Satoshi Uchida
Aoyama Gakuin University

This paper describes the following two points:
(1) The essences of CommonLOOPS as an object—oriented language.
(2) How to export the essences to other alien languages.

1. Introduction

This paper describes the principles and
key designs of CommonLOOPS-in-alien languages
(CL-in—-Alien), for languages such as assembly
language or C. CommonLOOPS[Bob85] is an
object oriented facility proposal for Common
Lisp [SteB4], and is discussed as a candidate
for the standard facility at IJCAI’85 Common
Lisp object oriented subcommittee where the
first author attended.

Though CommonLOOPS is mostly based on
LOOPS, the notations of the syntax are
different from LOOPS[Bob83]: the syntax of
Common LOOPS 1is quite simpler than that of
LOOPS, nevertheless the functionality
supported by CommonLOOPS is more flexible and
stronger than that of LOOPS. Some aspects of
CommonLOOPS are influenced by Flavors|[WeiB83].
The specification of CommonLOOPS is provided
by the two stages: kernel and extension.

The first author has continuous interest
to Common Lisp as the translator of the
book{idaB85a], as the chair of the Jeida
committee [JeiB5], and as a researcher
(IdaB5b] [ida85c]. He traced the discussions
of Common Lisp object oriented subcommittee
since October 1984, The second author has an
academic interest in data abstraction in
assembly language environment [(Uch85a]
{Uch85b] and in reusable environment
{Uch85c]. This paper is the first step of
them to find simple and common mechanisms for
object oriented facility.

In chapter 2, the brief survey of the
design goals of CommonLOOPS, the fundamental
reasoning of the object oriented facilities
in CL-in—Alien, are described. In chapter 3,
the most principal mechanisms of Cl-in—Alien
are described. In chapter 4, the algorithmic
essences of CL-in-Alien comparing CommonLOOPS
are described. In chapter 5, as a summary,
the future plans are presented.

2. The brief survey of the principles of
CommonLOOPS and the fundamental reasoning of
CL—-in—-Alien

2.1 the basics
We define object oriented programming
as a programming style (methodology). It

leads the conception that the problem is how
to supply rich set of primitives. On the
other hands, many programming languages
became to have three style: 1) structured
programming, 2) modular programming, 3) data
abstraction. By adding object oriented
facility to above three methodologies, the
language will have another kind of richness.
They are supported by:

1) class definition, method definition

2) method specialization

3) message sending feature

4) multiple inheritance

5) method combination

6) annoted value (active value)

2.2 Goals of CommonLOOPS and CL—in—Alien
i) CommonLOOPS has the following major
goals[Bob85].

1. Compatibility

2. Small kernel

3. Powerful base

4, Universal kernel

5. Common Lisp style

6. Efficiency

7. Extensibility

ii) CL-in-Alien has the following goals and
meanings:

1. Compatibility: the mechanisms are
compatible with Common Lisp based
CommonLOOPS. This gives us the same training
base, and the same terminology, and the same
0S primitives.

2. Small kernel: Simple and small enough to
attach object oriented facility to many
application written in other languages.

3. Powerful base: There are two ways for
powerful base. One is an approach like
exploratory programming [She83], in which all
the support tools should be included in a
running environment, and environments should
be dynamically changeable. The other is in
static environment and more tend to
efficiency. In the alien environments, some
may be in rich environment and some may be in
a slim environment. Then the goal should not
restrict to supply of rich environments.

4, Universal kernel: In the CommonLOOPS
document, Universality means that Flavors,
LOOPS, and Smalltalk can be implemented upon
the same kernel. In our context, universality
means the same kernel for various languages.

—105—

5. Common Lisp style: This goal cannot be
achieved as for syntactic notations.

6. Efficiency: For the application which
needs high performance, the system should
supply optimized codes without overhead. But
for the applications which needs guards and
run time checking, the system should supply
rich environments.

7. Exensibility: We need extensibility with
the same context as CommmonLoops.

3. the Principal mechanisms of CL-in—-Alien
3.1 Dynamic vs static
i) Dynamic environment
When an object orient facilities is
incorporated into an alien language, the
important factor is whether the language has
dynamic facilities: dynamic memory
allocation, dynamic function call changing,
etc. Since object oriented programming style
is mainly evolved in the Lisp environment
which has more dynamic environment among
various programming languages, object
oriented programming style has a lot of
dynamic facilities such as instance creation,
addition or modification of method in running
time, and method combination.
Sorry to say, most languages except Lisp

does not have a mechanism which realizes a
dynamic environment. So a run—time manager
module has to be introduced. The basic
facilities of the run—time manager module is
as follows.
(a) a run—time memory management:

mainly for creation or deletion

of an instance
{b) a run—time function invocation mechanism:

mainly for method specialization,

method combination

The other features of object oriented
programming style such as classes, methods,
message sending may be realized by using the
built-in mechanism of conventional languages.

ii) Static environment
Object Oriented Programming system is

desirable to be established in a

conversational style in a dynamic

environment. But from the view point of a

compactness of a processor and run-time

efficiency, it is a desirable case that the
system is still in a static environment. To
do this, the following steps are introduced.

(a) All the instances of classes are created
in compiling time.

(b) A variable should be strongly typed.

And the type of a variable is never
changed.

{¢) Method search is all solved in compiling
or linking stage.

{d) A database for classes and methods is
introduced so that an optimizing compiler
and linker can utilize at any time.

In this way, a compact and efficient
code can be generated.

3.2 Principal mechanisms for method search
The principal mechanisms of CL-in-Alien

should be compatible with those of

CommonLOOPS. In CommonLOOPS, message sending

—106—

has the same syntax as function call. As for
multiple inheritance, CommonLOOPS has both
LOOPS style and Flavors style. Method
combination of Flavors style is introduced in
the extension part.

Key mechanisms of CL-in—Alien are the
algorithms for method search. They may be in
compile phase or execution phase as requests.
There are two assumptive data structures:

1) A method name has a
method—-precedence—-list, a pointer—list or a
table whose entries are pointers for the
method’s definition (or body). See Fig.l.
Upon the defining method, the definition will
be added to the proper position in the
precedence-1list for the method name. See
Fig.2. The proper position means the position
which reflects the correct precedence for
method search.

2) there should be a database which has
informations concerning the positional
relations and types of slots{instances) of
each classes. See Fig.3.

Method name
1 2 ... i n

! !

!
¥ ¥
the highest the lowest

priority method
L1 r |
¥ &

argument definition
list list

Fig.l Method-precedence—list

move

]

(move :after (block))
(move (block))
(move :before (block))

add (move (colored-block))

EEEREEEEN
L v

(move :after (block))
(move (block))
(move (colored-block))
(move :before (block))

Fig.2 Adding a method
to a method—precedence—list

block method header
for block method
——

colored-block with (:include block)
block type

method header
for X y
colored~block-method

Fig.3 classes and slots

With these assumptive data structures,
following steps take place on method search;
a) Get the types of the arguments (or the
specific value assumption to the arguments).
Then find the first method in the
precedence-list.

b) If inherited or combined, there is a
possibility to execute further methods which
mate the situations, after investigation into
the precedence-list.

c) If Flavors 1like :before or :after is
specified, it needs primary method. But, this
type of method combination is easily possible
with the proper order of the method
definition 1list. Flavors type combination
needs to check the completeness upon
finishing the definition input, or to dynamic
check upon execution.

d) If there is a run—super specification, the
next method in the precedence-list is
sequentially executed.

The basic mechanisms are integrated and
lie in the run-super type execution rule.

4. Key elements of CL-in-Alien and
CommonLOOPS

CommonLOOPS has following
functionalities.

(1) Class Definition

(2) Method Definition

(3) Method Specilization

(4) Message Sending

(5) Multiple inheritance

(6) Method Combination

(7) Annoted value

In the following sections, we describe the
above 7 features respectively.

4.1 Class definition
i) CommonLOOPS spec
Classes are defined by defstruct. As the
defstruct—options,
:class class [LOOPS style class],
:class flavor [Flavors style class],
tinclude (superclass—name—-list) [for multiple
inheritance]
are introduced.

The form of slot-option is same as
COMMON Lisp. As for option in
slot-description, :allocation is introduced.
The :allocation option can have values class
(for class variable), instance (for instance
variable), dynamic (for allocated as an
instance variable in running time), or none
(for not inherited from its superclass).

ii) CL-in-Alien features

The mechanism for classes may be
realized by using the built-in facilities of
conventional languages. As CommonLOOPS does,
a facility for struct or a record can realize
classes by using the extension of them. In
the language which has neither a struct of a
record, a facility which creates an offset
structure can be used for the purpose. Take
an assembly language for example, EQU pseudo
operation 1is adoptable to describe classes.
See Fig.4.

(defstruct moving—ob ject
((x-velocity float)
(y-velocity float)
(mass float))

(a) A Class Definition in CommonLOOPS
; Example description of classes in an assembly

i language stored in a file named "moving—ob ject"
moving-ob ject-size equ 12

x-velocity equ 0
y—velocity equ 4
mass equ 8

(b) A Class Definition using EQU pseudo op.
Fig.4 Class Definition in CL-in—Assembler

4.2 Method Definition
i) CommonLOOPS spec

Method is defined as a Lisp function
using "defmethod". If you want to define as
Flavors style method combination, :after or
:before is specified as an additional option.
ii) CL-in-Alien features

The mechanism for methods can be

realized by using the function definitions.
In the simplest case, as an actual name of a
method, the name consisted of
"class-name.method-name" is used if there is
no method specialization and method
combination. The name may be accepted by a
conventional linker.

4.3 Method Specialization
i) CommonLOOPS spec

One of the most particular features of
CommonLOOPS is that the type of argument can
be specialized. In other words, same method
name on the same class may be defined if the
argument types are different. The most
"specific" method is executed if no method
combination is specified.
i1) CL-in-Alien features

In most of the conventional languages,

method specialization had better solved in
compiling time or 1linking time. This is
possible if the type of a variable is not
changed in a running time. The basic
mechanism to search the most "specific"
method in compilation is implemented by using
a database which treats method names and
method argument type as described in 3.2.

4.4 Message sending
i) CommonLOOPS spec
In CommonLOOPS, the notation of message

sending is just like as a function call in
Lisp. However, when the options for method
combination such as :after or run-super is
specified, the other method will be executed.
ii) CL-in-Alien features

The message sending itself is realized
by a simple function call with argument
check. But in the case when the method search
is required by the specification of method
specialization and method combination, the
dynamic mechanism for controlling the method
invocation is needed as described in 3. 2.

107 —

4.5 Multiple inheritance
i) CommonLOOPS spec

In CommonLOOPS, multiple inheritance is
defined by :include option in defstruct. The
searching algorithm is same as that of LOOPS.
ii) CL-in-Alien features

In most of the conventional languages,
an extension of include statement or copy
statement are used for a realization of
multiple inheritance. The basic mechanism to

implement multiple inheritance 1is already
showed in 3.2.
4.6 Method combination
i) CommonLOOPS spec
The basic mechanism for method

combipation in CommonLOOPS 1is run-super.
run—super is same as send-super in LOOPS. And
in the extension part, method combination of
Flavors style such as :after or :before is
also discussed.
i1) ClL—-in—-Alien features

The mechanism for a pointer to a
function (in an assembly language, C,
FORTRAN, Pascal, etc) can be used to realize
method combination in an executing time using
the algorithm described in 3.2. In the case,
some run—time manager for method invocation
will be required.

4.7 Annoted value
i) CommonLOOPS spec
An annoted value
value in LOOPS.
ii) CL-in—Alien features
Creation of slot-access function is used
for the implementation of an annoted value.

is same as an active

For an annoted value, get-function or
put—-function is prepared. The most simplest
steps in slot-access function are

lecad(store)—-value instruction and return
instruction. If a procedure for get(put) is
coded, it is concatenated to the above two
instructions. When the value is accessed, the
required function will be invoked and the
slot access will occur.

5 Final remarks

This paper showed the way to port the
principles and abstract common mechanism of
CommonLOOPS to alien languages. We are going
to clarify the ambiguity of the CommonLOOPS
specification.

After that, our next steps are

(a) Implementation of CommonLOOPS on APCL
{Aoyama Personal Common Lisp).

{(b) Incorporation of object oriented
programming style to an alien 1language,

especially an assembly language.

References

[Bob83] Bobrow.D.G.,Stefik.M.J.:
The Loops Manual, Xerox, 1983.
{Bob85] ~-,et.al.: CommonLOOPS, Xerox, 1985.

[IdaB5a) Ida,M.:Japanese version of [SteB4],
Kyoritu Pub. Corp. 1985.

[IdaB5b] -: Comments on Common Lisp, bit,
1985 (in Japanese)
[Ida85c] ~: A Proposal of a subset of Common

Lisp WGSYM IPSJ, Nov. 1985,

(to be appeared)

The Report of the Jeida Common Lisp

Committee 1985, (to be appeared)

Sheil,B.: Power Tools for

Programmers,Datamation, February,

pp.131-144,1983.

Steele,G,L.: Common Lisp: the

language, Digital Press. 1984.

[UchB85a] Uchida,S.,Mano,K.: A Structured
Programming and Modular Programming
Facility for the CP/M-86 Assembly
Language (in Japanese),WGMC IPSJ,
No.36-1,1985.

{JeiB5]

[She83]

[Ste84]

{Uch85b] —,~: A Data Abstraction Facility for
the CP/M-86 Assembly Language
(in Japanese),WGMC IPSJ,No.36-2,1985.

[Uch85¢] —,~: A reusable environment for
an Assembly Language of Micro
Computer Based on Data Abstraction,
(in Japanese), The Summer Symposium
of IPSJ, July 1985.

[WeiB3] Weinreb.D.Moon D. Lisp Machine Manual,

Symbolics Inc.1983.

108~

