® F M4 HE 35-3
(1985 12 20)

An Interpretation of the CommonLoops specification

Masayuki Ida, Satosi Utida

Aoyama Gakuin University

1. Introduction

CommonLoops is a proposal of the
Common Lisp language extension for object
oriented facilities, and was appeared at
IJCAI'85 Common Lisp meeting. The name
COMMONLOOPS is from "COMMON Lisp Object
Oriented Programming System", The
language overview of CommonLoops was
appeared as Bob85, But, many undefined or
uncertain parts are left in Bob85. It has
been discussed and improved through
arpanet mail and other communication
efforts for now. This paper describes an
interpretation of the specification of
CommonLoops for APCL by the authors
through the discussion and implementation
of a pilot version .,

There are three points in Bob85 to
discuss; One is the goals, another is the
kernel specification, the other is the
extensions (not fixed parts). As to the
goals, this paper has no specific opinion
but has summary in chapt. 2. As to the
kernel specification, this paper try to
make the kernel more clear. It will
appear in chapt. 3. As to the extensions,
this paper try to select most appropriate
ones, and is described in chapt. 4.

2. Goals of the CommonLoops

The goals of CommonLoops are the
follows;
1) Compatibility:::: CommonLoops is as
compatible as possible with Lisp's
functional programming style. Message
sending uses the same syntax as function
call, Object-oriented capabilities are
simple extensions of Common Lisp. For the
comparison to the usual Common Lisp
terminology, following correspondence may
assist to comprehension,

Usual CommonLisp CommonLoops
type class
slot slot
function method

function eall message send
2) Small kernel::::: CommonLoops provides
a small kernel.

3) Powerful base::::: No need for higher
level object languages for building
interesting applications

h) Universal kernel:s::: CommonLoops
provides a base in which Flavors,
Smalltalk-80 and LOOPS can be implemented,

The major mechanism for this is the
metaclass.

5) Common Lisp style::::: CommonLoops uses
the same style of names and syntax as
Comnmon Lisp.

6) Efficiency::::: Using proven software
techniques, CommonLoops can be implemented
to run efficiently without special

hardware support.

7) Extensibility::::: CommonLoops allows
several desirable extensions.

3. the Kernel CommonLoops

This section summarizes the kernel,
which is small and simple. Keywords for
the specifications are multi-methods,
class precedence list, method precedence
list, and discriminator. Keywords for the
language constructs are defmethod,
defstruct extension, meta class, simple
nethod combination.

3.1. Separation of definitions of classes
and definitions of methods

From the authors' stand point of
view, the major characteristics is the
separation of class definition related
syntax and nethod definition related
syntax. As the consequence, simple kernel
is possible. To define method, defmethod
is newly introduced. To define class,
defstruct syntax is extended.

3.2. Defstruct to define classes
Simple extension to defstruct syntax,
such as multiple inheritance and meta=-

class.

CommonLoops adds a :class
defstruct,

option to

(defstruct (point (:class class))
(x-position 0)
(y-position 0))

(:class flavor) is a class with Flavors
manner,

(:class class) is a class with LOOPS
manner,
CommonLoops provides several standard
neta-class; such as built-in-class,
structure-class, list-structure-class,
vector-structure-class,

<1>

3.3 defmethod, class-specifiers, method-
precedence-list, discriminator object,
remove-method

(defmethod move ((obj block) x y)

It requires obj should be a block class
object. x,y may be of any class.
Class-specifiers is a list of class
specifier, For the above example,
(block t t) is the class-specifiers of
the method for a selector 'move'. One of

the built-in types and a name defined by
defstruct can be used as a component of a
class~specifiers.

It several
methods

is possible to define
with the same selector. Methods
related to the same selector is gathered
into a special list, The list is called
method-precedence-list or discriminator
ob ject. With the 1list, method search,
specialization, and other operations are
carried.

removes the method
with class-specifiers,
is an

'remove-method’'
for the selector
(remove-method 'move '(block t t))
example.

The syntax of defmethod is parallel
to defun., See Fig.1. We design the
internal form of a method as

(METHOD class-specifiers

lambda-expression).
Method-precedence-list is a list of the
above form of method. This simple

structure enables us to make method body
equivalent to function body, i.e. lambda-
expression.

Specialize function adds a new method
to method-prcedence~list hold in the
function cell, and arranges the order of
the method-precedence-~list of a selector,
Key for ordering is class-specifiers.
Aside the method-precedence-list, it had
better to construct method cache. Method
cache is a short term lemitted size memory
for fast look up.

3.4, Message send nearly equal to function
call, multi-method

Message sending to a selector has the

same syntax as usual function invocation.

(defun foo (X ¥) ...) => FOO

There can be many methods with the same
selector name. A method is selected and
invoked only if all the arguments of it
match the required specifications. The
classical object oriented systems are
special cases where only the first
argument has its type specified.

For example, if there is a method
'move' with three arguments, moving block1

from position 33 to position 120 is
described in CommonLoops as

(move block1 33 120),

whose equivalent form in message sending

style is
(send blockt :move 33 120).
The interpretation of (move blockl 33
120) is
(funcall
(method-specified-by
ffixnum 'fixnum)
block1 33 120), and is not
(funcall
(method-specified-by 'move 'block)
blocki 33 120).
Arguments for a
effective for the
generally, method-specified-by
following form.
(rethod~specified-by
selector
(type-of argl)
(type-of arg2)

fmove 'block

all
More
a

selector are
discrimination.
has

where (type-of x) =
x)) and the value
type.

(name-of (class-of
is the most specific

This type of discrimination is called
multiple~diserimination in CommonLoops.
Methods discriminated by nultiple~
discrimination are called multi-methods.

Furthermore, we assume the number
arguments among methods with the
selector must be the same,

'self'is just the first
CommonLoops.

of
same

argunent in

3.5. Slot Access

Defstruct for defining a class
implicitly insert (:conc~name nil)
defstruct option. Access functions are
methods in CommonLoops. Then a slot name
is also used as a selector for the method

of accessor function (accessor method).

(== {setf (symbol-function 'foo) ~(lambda (x y) (block nil ...}))
(defmethod foo ((x cons) y) ...) => FOO
K== (setf (symbol-function 'foo)
(specialize (symbol-function 'foo)
*(method (cons t) (lambda (x y) (block nil ...)))
))
Fig 1 Defmethod is parallel to defun

<2>

3.6. Multiple Inheritance

Multiple inheritance is written with
an extended syntax of :include defstruct
option.

3.7. Method Combination

The primary mechanism for method
combination is run-super. The following
definition is inadequate but assist the
basic understanding;

"run-super = run this method with the
same arguments but do the next method that
would have been done if this one had'nt
been there" Aug. 7th 14:44 By L.Masinter

3.8. class, netaclass, and class
precedence list

Class i1s a name of a defstruct (with
:class) or one of the basic types of
Common Lisp.

Metaclass is class of classes. The

functions of metaclass are; class~-instance
creation, slot access function creation,
class precedence list creation, and
determination of the relation between
different metaclasses. Several types of
metaclasses are described in Bob85. But,
they have the same (only one) name space.
Differences are due to treatement of
several options and the resulted specific
actions. Flavor class is one example and
it indicates the method combination is to
be a Flavors style. the basic precedence

among classes is type hierarchy of Common
Lisp. The type hierarchy makes essential
class metaclass.

Fig.2 shows the schematic mnetaclass

modules. In the comments of Fig.2 program,
there are 7 1logical precedence list.
Class precedence can not be expressed by
one hierarchical list. One example is the
relation between sequence and symbol. If
nil (type 'null') is concerned, there is a
relation such that sequence is prior than
symbol. But, for any other than nil, there
is no precedence relation. Normal left-
to~right should be effective for the case,
We add a rule that sequence is prior than
array in the list from vector. With the
rule and list advance (sgainst symbol)
rule for nil which is in Bob85, there is
no ambiguity in essential types. The
class precedence among classes created by
defstruct are,

if there is no :include relation,

then independent and disjoint,
else
a class-advance relation between a
class and the inherited class as shown in
Fig.2, is created. For example,
(defstruct (foo (:class class)
(:include (bar baz)))
ees)

then class precedences are

foo => bar, and foo => baz.

If bar is defined as

3>

(defstruct (bar (:class class)
(:include the-super))
then foo -> bar -> the-super.
and baz are independent.

the-super

4, An Interpretation of the

Discussions

Extension

In Bob85, there are many extension
discussions and some proposals, In this
section, we try to name each problem and
to make comments,

4.1 individual-specialization problem

problem: the following is possible ?
(defmethod find-file (name (host-name
'MIT-AI))) ...)
further problem: if possible, the
is more specific than the following.
(defmethod find-file ((name string)
host-name) ...,)

above

key: need modification of the
left-to-right determining rule ?

normal

ansver: Yes,
modification

But do not need the
of ‘'normal! left-to-right
rule, an example is shown in Fig.3. Fig.3
also shows the contents of the function
cell of foo, i.e. discriminator object.
Method with individual specialization is
consed to the top of the discriminator.
Indicator for individual specialization

method is I-METHOD as in Fig.3. I-nmethod
tells us the discriminator contains the
individual method, I-methods are
sequentially scanned first. Then other
methods are checked,

related comments : we also exclude

'member' type specifier as bob85 says.
4,2 WITH problem

problem: will WITH-syntax such as
be added?
(defmethod move ((b block) new-x new-y)
(with (b)

follows

(erase b)
(setq x new-x y new-y)
(draw b)))
X and y are assumed to be slots of

‘block' defstruct, and are expected to be
treated as usual lisp variable here,

key: should a slot look like a variable?
answer: we do not want to

syntax with the current
syntax and the benefit.

include withe-
clarity of the

Essentical class precedence (schematic dl'ajmm)

1) string -> vector -> sequence -> array

2) null ~> list -> sequence -> symbol

3) cons -> list -> sequence

4) standard-char -> string-char -> character

5) {fixnum , bignum} -> integer -> rational -> number

6) {short~float , single-float , double-float, long-float}
-> float -> number

7) ratio -> rational -> number

%o Mo Ne Mo we we ne We we W s

’
(defun class—advance (x y) (put x y 'prior))
(class-advance 'string 'vector)
(class-advance 'string 'sequence)
(class~advance 'string 'array)
(class—advance ‘'vector 'sequence)
(class~advance 'vector 'array)
(class-advance 'sequence ‘array)
(class-advance ‘'null 'list) (class-advance 'null 'sequence)
(clasgs-advance 'null 'symbol)
(class—-advance 'list 'sequence)
(class~advance 'cons 'list) (class—advance 'cons 'sequence)
(class—-advance 'standard-char 'string-char)
(class~advance 'standard-char 'character)
(class-advance 'string-char ‘'character)
(class-advance 'fixnum 'integer) (class-—advance 'bignum ‘integer)
(class-advance 'fixnum 'rational) (class-advance 'bignum 'rational)
(class~advance 'fixnum 'number) (class-advance 'bignum 'number)
(class~advance 'integer 'rational) (class-~advance 'integer ‘'number)
(class-advance 'rational 'number)
(class—advance 'short-float 'number) {class—-advance 'short-float 'float)
(class—advance 'single-float 'number) (class-advance 'single-float 'float)
(class-advance 'double-float ‘'number) {class-advance 'double-float 'float)
(class-advance 'long-float 'number) {class—advance 'long-float 'float)
(class-advance ‘'float 'number)
(class~advance 'ratio 'number) (class-advance 'ratio ‘'rational)
(defun class~prior-p (x y)
(let ((val (get x y))) (if val val (if (get y x) 'posterior nil))))

Fig.2 Class precedence list of Common Lisp essential types

(defmethod foo ((x 'cons) (y number)) ...) => FOO
(symbol-function 'foo)
=> ((i-method ('cons number) (lambda (x y) (block nil ...)))
(method (cons t) (lambda (x y) (block nil ...))))

Fig.3 Individueal specialization is indicated by I-method

<4>

4,3 LOOPS extension problems
There are five categories.

problem 1 : allocation option as a new
slot option
tallocation {class, dynamie, instance,
none}
‘class!
and global!
'dynamic' means 'automatic allocation?,
i.e. allocate the slot in the instance
on the first appearance.,

'instance' is the default interpretation

means ‘shared by all instances

‘none' means 'the slot name is inherited
but will be prohibited/deleted in the
class'!

answer: Ok, we will try to implement.

problem 2 : undeclared slots

add two functions; get-dynamic-slot and
remove-dynamic~slot
which look like plist mixin flavor of

Flavors.

answer: we cannot realize the fruit of the
implementation effort currently.

problem 3 : annotated value
new slot option for get/put-FN;
function :put-function,
One application is to
values of LOOPS.

iget-

implement active

answer: we agree the needs., but implement
later.
problem 4 use ‘'initialize' for the

initialization of the slots and

the constructors of defstruct with :class
should use ‘'generic make', which enables
run-time evaluation.

the

answer we can not understand

intention of the problen.

problem 5 : changing classes

can reorganize structure of a defstruct
as a new class dynamically?

and use 'change-class'
answer we can not understand the
intention of the problemn.

is it feasible to do so?

4.4 runsuper problem

problem: can change the arguments passed

to the super method?

answer: no

4.5 method combination problem

problem: can allow Flavors style method

combination ?

<5>

(allow :before and :after ?)
(defmethod (move :before) ...)
(defmethod (move :after) ...)

In the method-precedence-list, :before
methods, the applicable normal method
(primary method), and :after methods are
collected into a combined method.

answer: Yes we can,
4.6 REF problem

problem: introduce a new function named
'ref!' which is equivalent to a access
function of slot but extended to
undeclared slot.

remarks: this problem has a relation to
the 4.3 problem 2.
the of

answer: we can not realize fruit

the implementation of it.

4.7 mlet problem

problem: can allow lexical bind of the
methods?

nlet, mlabels are parallel to flet,
lables.

(mlet specializes the function-cell,

while flet binds it)

answer: as arpanet discussion shows,
have a doubt of implementability.

we

4,8 discriminator primitives problem

problem: there should be two primitives,
specialize and make-discriminator.

answer: we use 'specialize' function as
(specialize discriminator method) in
defmethod. we do not use 'make~

discriminator!.

note: discriminator is a functional object

normally created and installed in
function-cell.
4.9 Complex specialization problem
problem: allow complex specialization
specifiers such as;

(or typel type2 ..),

(integer lower-limit upper-limit),

(not type) and so on.
answer: no
4.10 lambda-list keyword problem
problem: allow lambda~list keywords,

&optional, é&rest, and &key ?

answer: methods for a selector must have

the same number of arguments., S0, we
wanted to exclude &optional, &rest, and
&key from methods for safety sake., But,

it is possible to pass them to lambda-list
of the method. For example,

(defmethod foo
((x cons) (y string) &optional (z 1))
is processed as
(method (cons string)
(lambda (x y &optional (z 1))

Then our system process lambda-list
keywords as only lambda-list, not as
sources of class-specifiers.
4.11 Method slot problem
problem: allow a new defstruct option,
:method-slots for virtual slots.

(defstruct

(steam (:class method-slot-class)
(:method-slots
(tyo 'default-tyo)
(tyi 'default-tyi)))

tyo, tyi are virtual and slot access for
them means method invocation. (Methods

like (defmethod tyi)
...) are called.)

(defmethod tyo

answer: we need the clarity of the syntax.

5, Discriminating-Eval and D-evlis
Discriminating-eval (d-eval) is an
eval-like language construct defined by
the author. D-eval is used for universal
discrimination base of method. The major
difference between usual eval and d-eval
is the latter is the multiple value
function, on the other hand the former is
the single value function. Since our
interpretation prohibits multiple valued
multi method, there is no problem. The
return values of d-eval are;

evaluated value, which is the same value
as the usual evaled, and, the class name
of the evaluated value. for example,
(dweval 1) => 1 ; FIXNUM

(d-eval "Common Loops") => "Common Loops"
; SIMPLE-STRING

(setq a "(x ¥))

(d-eval a) => (X Y) ; COMS

(setq a (})

(d-eval a) => NIL ; NULL

quite parallel with the
like a man on the sunny side
If a method is to be
used mainly inside
for a method is

D-eval is the
usual eval,

road and his shadow.

evaluated, d-eval is
the evlis. Arguments
processed by d-evlis (discriminating
evlis), which combines each multivalue
into two lists. Arguments of a method to
be evaluated are processed using d-evlis,

<6>

for example,

(foo 1 nil " string ")

==> (d-evlis (1 nil " string "))

=> (1 nil " string ") ; (FIXNUM NULL
SIMPLE-STRING)

==> (1 nil " string ") is used for the
arguments for FOO,
while, (FIXNUM NULL SIMPLE-STRING) is

used for searching the appropriate method
with a selector 'FOO', (FIXNUM NULL
SIMPLE-STRING) is logically compared to
the class-specifiers of methods.

The schematic definition of d-eval and d-
evlis are shown in Fig.4 and Fig.5.

Future works

We want to implement a complete
object oriented facility of Common Lisp.
We think CommonLoops is the base, After
asking the conclusion of december meeting

of US committee, we will go on the
implementation on our machine, On the
other hand, the first author want to
discuss our implementation by the Jeida

Common Lisp committee and object oriented
(ComnonLoops) working group.

Acknowledgements
The authors would express their

gratitude to Dr. Kenneth Kahn of Xerox
PARC.
Reference

[Bob85] Bobrow D.G., Kahn K., Kiczales
G., Masinter L., Stefik M., Zdybel F.
nCOMMONLOOPS® pre-IJCAI'85 draft, ISL-85-
8, XEROX PARC 12 August 1985

[Stef4] Steele Guy L., et.al. Common
Lisp:the language, Digital Press 1984
(japanese edition by M.Ida, kyouritu pub.

Co. 1965)

(defmethod d-eval {(exp cons))
(cond ((symbolp (car exp)) ...)
((eq (caar exp) 'lambda) ...)
cee)
(defmethod d-eval ((exp fixnum)) (values exp 'fixnum))
(defmethod d-eval ((exp bignum)) (values exp 'bignum))
(defmethod d-eval ((exp symbol))
(if (null exp) (values nil '"null)
(let ((slot (bind-val exp)))
(if (or (null slot) (eq (value-part slot) 'special-value))
(values (symbol-value exp) (type-of (symbol-value exp)))
(values (value-part slot) (type-of (value-part slot)))

)

Fig 4 Overview of D-eval methods

(evlis args) <==> (do (val (args args (cdr args)))
((null args) val)
(rpush (eval (car args)) val))
(d-evlis args) <==> (do (val classes (args args (cdr args)))
((null args) (values val classes))
(multiple-value-bind (a b)
(d-eval (car args))
(rpush a val)
(rpush b classes)))
(rpush x y) <==> (if (consp y)
(rplacd (last y) (list X))
(setf y (list x)))

Fig. 5 Parallel description of D-evlis and evlis

<7>

