2 5 N B 34-4
(198511.13)

A Common Lisp Subset Proposal

Masayuki Ida

Assis.Prof, Aoyama Gakuin University
Chair. Jeida Common Lisp Committee

1. Introduction

This paper describes a Common Lisp
subset proposal design by the author.
Along with the AI focussing, Common Lisp
[ste84] is going to be at the position of
the standard bus for AI software. Many
Common Lisp implementations appeared and
further implementations are going to
appear.

In general, when many implementors
face to the rich functions of Common Lisp,
some of them may wonder zll the conponents
can be fully used for their system. And
if he is a researcher, he may want to add
advanced features invented by him. It
will lead the divergence of the language
specification. Especially for micro
conputer-based implementation or
implementations aiming at portability have
tendency to make a original subset,
Furthermore personal computer based
implementaions which are already sold in
market place have different subsetting.

The author has an interest in subsetting
since '84 and discussed subsetting on
neetings of Jeida Common Lisp committee
[ida85a,b,c].

2. History and the status related to
subsetting

2.1 In USA

There is a subset subcommittee.
But, nothing was decided. till now.

There are two major opinions around
subsetting. One is "we need one official
subset", the other is ‘"we don't care
whether the subset is defined or no". I
want to quote several opinions as follows;

The Common Lisp committee has not
defined a standard subset.and it
appears that at least one subset,if

not many such subsets, will appear.
Unless these subsets are co-ordinated
and widely adopted, then we will see
one of the major goals of Common Lisp
-~transportability-- lost.

by R.P.Gabriel and R.Brooks
in [Gab84]

It is possible to subset Common Lisp,
of course. The question is, will it
be Mofficially recognized" as a
Common Lisp implementation? There was
a great deal of debate on this at the
Monterey meeting. Some felt that the
purpose of Common Lisp to permit
transportability will be defeated if
there are subsets. Others felt that

it is important to recognize at least
one official subset for use on

microcomputers, especially for
teaching purposes.

by Guy L. Steele Jr. in
[Ste85]
I am less enthusiastic about the
creation of a standard subset -- I

believe that virtual memory personal
computers will be available soon and
that Japan will not lag behind the
U.S. in this area -- but I am still
willing to help with your efforts on
this,

by S.E. Fahlman in [Fal85]

2.2 In Europe:

The author heard at IJCAI'85 that
an european subset draft would be
discussed and proposed in september 1985.

2.3 In Japan (around the author):

1) the introduction of GCLisp
primitives based on [g0184] was
presentedat june 11th meeting of Jeida
comnittee [ida85].

2) The second memorandum{ida85b] was
presented and the first discussion at
July 9th '85 meeting of Jeida committee.
21 members agree to continue to discuss a
subset, 3 members have no comments.

3) 'On the subsetting Common Lisp"
[ida85c]at Sept.11 Jeida Common Lisp
workshop. The basic policy of a private
draft is presented and discussed.

4) at Sept. 13th WGSYM evening meeting.

Discussions around Common Lisp and
subsetting are there.
5) 'Memo for a subset Common Lisp

proposal! was presented at Oct,15th
meeting of Jeida committee.

6) This paper

3.Possible points of view for subsetting

There are three types of reasoning

for subset as follows;

i) For pedagogical reason.
Because, full set Common Lisp is so

huge that a kind of consensus is needed
to determine what is minimal set of
operations and data types to teach. The

author compare primitives in several
educational documents such as Sun Marco
explorer, R.Brooks text, Lisp 2nd

and APCL of the author, and
[ida85b]. For pedagogical
so many functions are

edition,
reported in
applications, not
needed.

ii) For technical reason.
It is impossible to implement full
set Common Lisp on small scale personal

computers/hand~held computers, Then, if
there is NO control for ‘'Common Lisp
Dialects! on PCs, it will lead
incompatibility among such

implementations, and the effect of the
no-control policy will be bad for Lisp
community.

iii) For literature reason.

There should be two levels or so of
standards. Because, many languages have
two levels of standard. Then it is not
wrong that Compmon Lisp has two level; COne
is full set and the other is subset.

This paper agrees the above three
factors. The first one (pedagogical
reason) has close relations to teaching

style and philosophy of lecturers,
Essentially, there is no standard for
teaching philosophy. But the base is
needed, The rests have relations to the
infrastructure of Lisp community.

4, Basic issues and decisions
4,1 General issues

1) Is this proposal for personal corputer
based implementation? ---> Yes and No

YES: As prof. Fahlman said in
[Fah85], personal computer will grow to
have much more memory space and secondary
storages. Large size personal computer
will be possible to run full set Common
Lisp. But, there is a price range
factor. There will be still low-end
computers with popularity. Price of the
machine which may run this subset can
range among a few thousand dollars.

No: The decision upon defining
subset should not include the
restrictions drived from the current
technology.

2) How small or slim?

A subset which is very small, cannot
play the actual roles. For example,
Minimal Basic seems to be dead now for
almost every scene. Then this subset of
CommonLisp should not go to extremes,
The author have an image in mind the size
is about half of full set. And may be
more than 50%, but not greatly less than

50%.

3) What is the basic policy?
pon't cut arms and legs of Common Lisp

(2)

4,2 Some technical issues

1) Do we assume compiler? ----> Yes

Interpreter plays a role of command
interpreter/debugger. As a matured
language, a compiler should be equipped.
2) DO we keep the -—D
Yes

type hierarchy?
Omit some types, but, preserve

hierarchy (for example, character type is

independent from number)

3) Do we

omit sequence type? ~-=> HNo

(for user friendlyness)

4) Do we need complex numbers? —---> No

5) Do we need the visibility of systen
constants and variables?

--=> No (some variables and constants
are left)
6) Do we need complete function sets of
numbers? ---> No

preserve types except Complex

numbers., delete almost all the

irrational functions

7) Do we need hash-table? ---> No
8) Do we need dynanic
array? ---> No

Only simple and
fill-pointers, no

properties of

static array. no
ad justable array, no

bit arrzy. three dimension, not seven,
is enough.
9) How about the format feature? --->
there are two ways

1. limit the field specifier
set,consulting fortran case.

subset F77 has I, F, E, L, A4, '...',

H, X, /, P, N, Z, BZ ,BN.

subset F77 does not have colon, S, SP
,38, T, TL, TR, G, and list directed
editing.

2. exclude all the spec of format fron
subset
-=~> include format with restricted
syntax
10) How about lambda list keyword? --->
make it slim
only &optional and é&rest
11) Will include the object oriented
facility? ---> No,
CommonLOOPS[Bob85] will be the

standard after some discussions. But not

include in this subset,

12) Do we include go/prog/tagbody? =--->No

"go" structure should be rewritten
with other constructs. In Common Lisp, go
is not always equivalent to a simple jump
instruction, prog is obsolete., If there
is no "go", tagbody is meaningless.

13) Keyword arguments ? => restrict to
the special cases, So parser will be
easier (general parsing mechanism for
keyword is not needed)

5.Summary of the subset spec

Total: 330 functions, 2 constants, 7
variables (Table 1). Fig.1 shows the
type hierarchy of this subset.

Table 1 Functions of this subset

No.of functions

program structure 2
predicate 27 + 2 const.
control structure 51
macro 5
declaration 2
symbol 10
package 1
number 51
character 21
sequence 17
list 62
hash~table 0
array 6
sting 9
structure 1
evaluator 1
stream 1+ 7 var,
input/output 22
file system 11
error 3
miscellaneous 26

Notation of the following summary:
1) listed elements are included in
subset spec.
2) single braketted elements
1) are OMITTED.
3) double braketted elements ([[...

r ...

have RESTRICTED syntax/semantics

4) triple braket ([[[‘e 11
contains comnents
Chapter 2 Data Type

rumber, integer, fixnum, bignum,
ratio, float, short-float,single-float,

double-float, long-float, [omit: complex]

character, standard-char, string-
char, [[{comment: bits-attribute and
font-attribute may be zerol]]

symbol,list,cons,null

array, [[restricted: max
array means simple-array]],
vector]

[hash table]

[[readtable;restricted to only one
readtable]]

rank=3,
fomit: bit

[package, pathname, stream, random-
state]

structure, function

2.15 type

overlap,inclusion,dis jointeness

[{[preserve data type hierarchy of
full set. hierarchy figure is defined as
in [ida84] 1]}

Chapter 3, Scope and Extent
[[[same scoping as full set]]]

Chatpter U4, type specifier

standard type specifiers of Fig.4.1
are all active, coerce, typeof,
readtable, simple-array, simple~bit-
vector, simple~string, simple~vector

[bit, bit-vector,complex,hash-table,
stream,]

[And omit functions such as deftype,

type specifier combination, predicating
specifier(satisfies)]

Chapter 5. Porgram structure (2
functions)

defun,defvar

[omitted functions
tagbody, macrolet, flet,
eval-when,go]

[&key,&allow-other-keys,&aux from
lambda~list keyword, lambda-list~keyword,
lambda~parameters~limit, defparameter,
defconstant]

from Fig 5.1;
compiler-let,

Chapter 6. predicates (27 functions, 2

constants)

nil, t, typep, subtypep, null,
symbolp, atom, consp, listp, numberp,
integerp, rationalp, floatp, characterp,
stringp, vectorp, simple-vector-p,
simple~string-p, arrayp, packagep,
functionp, compiled~function~-p, commonp,

eq, eql, equal, not, and, or
[complexp, bit-vector-p,
bit-vector-p, equalp]

simple-

Chapter 7. Control Structure (51
functions)
quote, function,

symbol-function, boundp,
special~form-p, setq, psetq,
makunbound, fmakunbound, setf, apply,
funcall, progn, progl, prog2, let, let#,
progv, labels, if, when, unless, cond,
case, block, return-from, return, loop,
do, do#, dolist, dotimes, maplist,
mapcar, mapc, mapl, mapcan, mapcon,
values, values-list, multiple-value-list,
multiple~value-progil, multiple~value~
bind, multiple~value~setq, multiple-
value-call, catch, unwind-protect, throw

[psetf, shiftf, rotatef, defsetf,

symbol-value,
fboundp,
set,

define-setf-method, define-modify-macro,
get~setf~method, get-setf-method-
multiple~value, call-argument-limit,
compiler-let, flet, macrolet, prog, go,

typecase, tagbody]

setf accessible forms;
aref, car, ecdr, c...r, fill-pointer,

first, get, getf, nth, nthedr, rest,
second, symbol-function, symbol~plist,
symbol-value, third, access function of
defstruct,

°G @k 11U
LTI HEBEBOTRO 24 Syoseraty ads] 3ssqng dSTT uouwod [[g|

‘qutefstg @[]
{TTu}=1T0U 1Y

unubtq wnuxTjJ 103094 103094A-31q butiys
~-a1dwts —a1duts —-o1duwts
learjuapl 1o juiofsig ,
3BO0T3 3ROTJ 3BOTJ 3e0T3
-buof -8Tqnop -d3Tburs -310Yys ...
| \ 103094
(3 103034) -31q butiiys

N

_oﬂumu 186373UT

. .. Ileyo-pIepuels /
/MM/\\\\\\ ./ﬂ/,\ Aei1ae \\\\\\

EDFeD- aeo1d HMEOHummg 1eyo-buriys ~-aTdwTs uouuwl
.- TInu
\\ //- //4\ /\\/
Jaqunu Is30vIRYD Aeiie KHOQEMm / Su0D
B 7
I \/
sheyoed. OTQRIPEROI SEqeS=yHSRIL 9In3onins uor3ong A// 3ISTT
—
aouanbas
DRI =GP
\\\\
...:III!III!IIIIIIIII!IIII/ \MWI\\\\\\\i\\\l\\\\\\\\\\\\\\\l\\\&&¢¢%ER$

3

(4)

[omitted access form; elt,fourth--
tenth,svref,gethash,documentation,
C....r, macro-function, (char, schar,
bit, sbit, subseq) function calls, the-
declaration, apply]

Chapter 8. Macro (5 functions)

macro-function, defmacro, macro,
macroexpand, macroexpand-1

[defmacro keywords only to
&optional and &rest]]

[omit *macro-expand-hook#, &key,
4allow-other-keys, &aux, &body, &whole,

&environment]

Chapter 9. Declarations (2 functions)

Only (declare (special veal)
acceptable

[omit all the spec of declarations
but abovel

[[["the" acceptable but not
effective]]]
Chapter 10. Symbols (10 functions)

get, remprop, symbol-plist, getf,
renf’, symbol-name,

nake-symbol, copy-symbol, gensyn,
keywordp

[get-properties, gentump, synbol-
package]
Chapter 11. Package (1 function)

[All the spec of Package features
are omitted,but below]

11.1 consistency rules, intern
Chapter 12. Number (51 functions)

zerop, plusp, minusp, oddp, evenp,

=y /=, <, >, &=, >=, max, min, +, -, ¥
/y 1+, 1-, inef, decf, ged, lem, exp,
expt, log, sqrt, abs, signum, sin, cos,
tan, rational, rationalize, numerator,
denominztor, float, floor, ceiling,
truncate, round, nod, rem, logior,
logxor, logand, logeqv, lognot, logtest.
logbitp, ash

[[complex related features of above
fuctions are omitted]]

[complex and byte-manipulation
functions, randon~numbers, implementation
parameters described in 12, 10.

conjugate, isqrt, phase, cis, asin,

acos, atan, pi, sinh, cosh, tanh, sinh,
acosh, atanh, ffloor, feceiling,
ftruncate, fround, decode~float -
integer-decode~float, complex, realpart,
imagpart, lognand, logande1, logande2,
logore1, logore2, boole, bool- constants
byte, byte-size, byte-position, 1ldb,

ldb-test, mask-field, dpb, deposit-field,
random, *random-state¥, make-random-state

Chapter 13, Characters (21 functions)
standard~-char-p, alpha-char-p,
upper-case-p, both-case-p, digit-char-p,
char=, char/=, char<, char<=z, char-code,
code-char, make-char, char-upcase,
digit-char, char-int, int-char, char-

downcase, char-name, name-char, char-bit,
set-char-bit

[char-code-limit, char-font-limit,
char~bits-limit, graphic~-char-p, string-
char-p, alphanumericp, char-equal, char-
not-equal, char-lessp, char-greaterp,
char-not-greaterp, char-not-lessp, char>,
char>=, 13.5 char control bit functions

1

Chapter 14. Sequences (17 functions)
subseq, reverse, nreverse,
every, notany, notevery, sort
[{as to fill pointer:: elt,length]]
[[as to :start - :end :: remove,
renove-if, remove~if-not, remove-
duplicates, find, position, count]]

some,

:count,
make~-sequence,
£i11, replace,

:from-end, istrat, tend,
concatenate, map, reduce,

delete, delete-if,
delete~if-not, delete~duplicates,
substitute, substitute-if, substitute~
if-not, nsubstitute, nsubstitute-if,
nsubstitute~if-not, find-if, find-if-not,
position-if, position-if-not, count-if,
count-if-not, mismatch, search, stable-
sort, merge]

Chapter 15. list (62 functions)

car, cdr, c..r, c...r, cons,
equal, endp, list-length, nth, first,
second, third, rest, nthedr, last, 1list,
list#*, append, copy-list, copy-alist,
copy-tree, ncone, push, pushnew, pop,
butlast, nbutlast, 1diff, rplaca, rplacd,
pairlis

tree-~

[[keyword not allowved; subst,
nsubst, sublis, member, member~if,
member-if-not, adjoin, union, nunion,
intersection, nintersection, set~
defference, nset-difference, set-
exclusive-or, nset-exclusive-or,
assoc,assoc-1if, assoc-if-not, rassoc,

rassoc~if', rassoc-if-not]]

fe....r, fourth -~ tenth, nake-list,

revappend, nreconc, subst-if, subst-if-
not, nsubst-if, nsubst-if=-not, subsetp,
acons, tailp]
Chapter 16. Hash-table (0 functions)
[aLL }

Chapter 17. Array (6 functions)

vector, aref, array-rank, array-in-
bounds~p, array-total-size

[{ make-array(limit to three

dimensions (not seven), all the keyword
argunents but :initial-contents are
deleted)]]

[array-rank-limit, array-dimens ion~
limit, array-total-size-limit, svref,
array-eclemet-type, array~dimension,
array-dimensions, array-row-major-index,

ad justable-array-p, bit,
bit-or, ..., bitorc2,
has-fill-pointer-p,

vector-push,

sbit, bit-and,
bit-not, array-
fill-pointer,
vector-push-extend, vector-
pop, ad just-arrey, 17.4 all (bit=
array),17.5 all (fill pointer),17.6 all
(auguuentation of dimension)]

Chapter 18. string (9 functions)
char, string«trim, string-left-trim,
string-right-trim, string-capitalize

[[subseq(:start and :end) related
restriction HH string=, string/=,
string<, string<=]]

[schar, stringd>, stringd=, string-
equal, string-lessp, ... ,make-string,
string-upcase, string-downcase, nstring-
upcase, nstring-down-case, nstring-
capitalize]

Chapter 19. structure (1
[[defstruct 1]

functions)

[:type,:read-only (in defstruct
slot option), :conc-name, :constructor,
:copier, :predicate, :include, :print-
funetion, :type, :named, :initial-offset
(in defstruct option), by-position
constructor]

Chapter 20, Evaluator (1 function)

eval

[evalhook, applyhook, ¥evalhook¥,
*applyhook#, constantp, +, ++, +++, -, ¥,
¥R,ORERL /, //, 117]

Chapter 21.
variables)
¥*standard-input®, #standard-output#,
#*error-output®, #*query-io*, #*debug-io*,
*terminal-io%, #*trace-output#

stream (1 function, 7

[[close (Ko :abort arg) 1]

[make-synonym-stream, make-,, .~
stream, get-output-stream-string, with-
input-from-string, with-output-to-
string,streamnp, input-stream-p, output-
stream-p, stream-element-type]

Chapter 22. input/output (22 functions)

22.1.4 dispatching macro character
ﬂ' l"(1”" 1*" JPBMD 7& 7‘?)(,*HA !*i
{‘1"* 1. . 0.2 ’w »HR $01= v“f“*r%)]

22.1.5 [¥*readtable*, copy, readtable,
readtablep, set-syntax-from~char,
set/get~macro-character, make-dispatch-
macro-character, set/get-dispatch-nacro-
character]

22.1.6 [*print-...* all omitted]

22.2 input

read, read-line, read-char,
char, listen,
input, read-byte

[#read-default-float-format¥,
preserving-whitespace,

unread-
read~char-no-hang, clean-

read-
read-delimited-

(6)

" This subset draft will be

list, peek-char, parse-integer]
[[read-from-string (no keyword arg)

11

22.3 output

write-byte, prini, print, pprint,

princ, prinl-to-string, prine-to-string,
write-char, terpri, fresh-line, fornat,
y-Or-n-p, yes-or-no-p

22.3.3 format specifier:

~A1 -S’ -D, ~X7 ~C1 ~F’ ~E’ ~%’ ~&1
~1, ~~, “<newline>, ~{, ~}

[-B, ~0, "nR, P, "G, 7§, s
~?, ~(str~), “[str0~;...strn™], “<str™>

~T, ~5

]
Chapter 23.file system interface (11
functions)

23.1 file name pathname
file name should be string

fall the pathname related
definitions are omitted]
23.2 file open/close

open

[[file nane should be string
(:direction is Only input or output,
:element-type 1is only string-char or
unsigned-byte, :if-exists omitted, :if=-

does-not-exist omitted)]], with-open-file

23.3 rename~-file, delete~file, probe~
file, file-write-date, file-author,
file-position, file-length

23.4 [[load(no keyword)l], [#load-
verbose#]
23.5 directory
Chapter 24, error (4 functions)

error, cerror, warn, break

[#break-on-werning¥®, check-type,
assert, etypecase, ctypecase, ecase,
cease]

Chapter 25. miscellaneous (26 functions)
compile, compile~file,
docunentation, trace, untrace, step,tinme,
describe, inspect, room, ed, dribble,
appropos, appropos-list, get-decoded~
tine, get-internal-run-time, get-
internzl-real~tine, sleep, lisp~
implementation-type, ¥features¥, lisp~-
iniplementation-version, machine~type,
machine~version, machine-instance,
software~-type, software-version

[disassemble, get-universal-tine,
decode/encode~universal-tine, internal-
time-units-per-second, short-site~nane,
long~site-name, identity]

submitted to
Jeida Committee and discussed. Also sent
to some US researchers. The summary of
this draft is on fj,lang.lisp newsgroup
of junet. (The author's Jjunet address
for the matter is 'ida€ccut') The author

from all the
post mail and

will appreciate opinions
persons through network,
face to face communication.

Acknowledgements

The author want express his gratitude to

all the persons who intersted in
subsetting and encouraged him,
especially; For the members of Jeida

Common Lisp committee , members of WGSYM
of IPSJ, Dr. Guy L. Steele (Thinking
Machines Inc.), Prof S.E.Fahlman (CMU),
Dr. Gerald Barber and Mr.Stan Curtis
(Gold Hill Computers Inc.) who introduced
GCLisp to the author, Dr. Masinter (Xerox
PARC), and Prof. Tuji (Aoyama Gakuin
University) who gave him the informations
on [bro84].

References

[Bob85] Bobrow D.G., et.al;
CommonLOOPS, ISL-85-8 Xerox PARC, 1985

[bro8i] R.Brooks; Text for CS122
stanford univ,
[Fal185] S.E. Fahlman; private

communication to the author dated May 14,
1985

7)

[Gab84] Gabriel R.P,, Brooks R.;

A Critique on Common Lisp, pp1-8, Proc.
of 1984 Lisp conference, Aug.196l

[g0184]; Gold Hill Computers Inc.:

golden common lisp reference nanual
version 1.00
[ida85a] M.Ida: Memo for GCLisp

primitives, LC2-2

Jeida Common Lisp comnittee, June
1985
[ida85b] -:
Lisp subset,
LC-3-2, Jeida
1985 July 9th
[ida85¢] -:0n a Common Lisp subset;
preprint of Comnion Lisp workshop,
Sept.11, 1985

[Ste84] Guy L. Steele Jr. et. al.;

Common Lisp: the language, Digital
Press 1984 (Japanese edition by M.Ida,
Kyouritu Pub. Corp. 1985)

[Ste85) -; private communication to the
author dated March 27,1985

(also appeared in M.Ida;"Some topics of
Common Lisp" appendix 7.

WGSYM IPSJ June 1985)

[(Win84] P.H.Winston, B.K.P.Horn;

Lisp 2nd edition, 1984, addison wesley

11th
One view point toward Common

Common Lisp Comnittee,

