AN ADAPTABLE LISP MACHINE BASED ON MICRO PROCESSORS

Masayuki Ida and Koutaro Mano

Dept. of Industrial and Systems Engineering, College of Science and Engineering,
Aoyama Gakuin University
6-16-1 Chitosedai, Setagaya, Tokyo,157 Japan

A micro processor based Lisp machine for
practical use is described, The machine named
ALPS/I has been working for several years. ALPS/I
is the first outcome of our research, in which we
seek the high utility and adaptation of Lisp-based
systems and its hardware, along with the
progression of micro processor technologies.

The memory space of the micro processor in
ALPS/I is expanded and hierarchically splitted
into two 32k partitions. The lower partition is
used as usual byte-accessible memory, but the
higher partition is not. The latter is used to
access the 64k word(35bits each) bulk memory for
holding all the Lisp data. On transferring data
between the bulk memory and the lower partition,
the address of the former must be arbitrarily
specified, but the latter may be limitted for
several locations, by the virtue of the Lisp
characteristics. Then we designed an interface
circuits composed of 16 address mapping registers
named AAM. Using our interface, only a few
instructions of micro processor are necessary to
transfer data between bulk memory and the buffers
in lower partition.

INTRODUCTION

Lisp, a symbol manipulation language, is
widely used in artificial intelligence fields. As
one of the Lisp characteristics, it is well known
that large storage capacity is necessary to cope
with meaningfull applications. Consequently, most
popular Lisp systems are implemented on the
large-scale general purpose machines., We had
desired the free access Lisp system for many
years, and tried to make a Lisp system using micro
ProcCessors.

In constructing the system, we considered the
followings regarding Lisp characteristics and user
availability:

1) No overhead to start, and free access.

2) Lower cost and compactness. For extensibility
and maintainability, it is desired to use the
standard components. Micro processors seem for us
to be extensible components to build adaptable
computer systems., As a result, lower cost and
compact implementation are also realized, And
along with the technological improvement of
hardware, we expect the growth of our system.

3) Large storage capacity. The size of main
memory is cruicial for Lisp applications, except

for educational use.
4) Many functions and facilities to assist the

=
cesaerns aseareoefsose A3

Fig.l ALPS/I System
intet 8080 F
with keyboad.
PTR/PTP
{max 333char/sec) é i
|1 8kbje
e
- 3} cyfl_z 15usec/8)
floppy =1 | PROM
Disk {Bibyte
Unit | teyele 15usec/B)
BULK-RAM Bulk Memory|
INTERFACE 64 kM
(lw=36bif)
eess (85pyele ESusech

Fig. 2 Hardware configuration.

users.

According to these principles,
and implemented a Lisp machine,
(Aoyama List Processing System/I).
been working for several years. And as one
application, formula manipulation language
RE:DUCE—Z? which is written in Lisp, is running.

HARDWARE ORGANIZATION OF ALPS/I

Desian Principles — Employing an 8 bit Micro
Processor

According to the general requirments,
following basic considerations are fixed:

1) Employ an 8 bit micro processor as a con;rol
unit for it's popularity and adaptability.

we designed
named ALPS/I
ALPS/I has

CH1474-6/79/0000-0210$00.75 © 1979 IEEE

210

2

Initiate Signal
ot I e oo Vi Contraler Jemmemeen ~

DMA Coritroler

]
]
0

>

,-* AAM Data Drsplay
(16)

1
0
0
'
[l
1
"
]
]
'

o
P

v
* \Resetsw 'l
[]
1
[
{

\
\\
\
\
\
N,
\

15 % e aree e e
™

cemcccmscmcansne s

Intel hardware instrudion
| X'77'TR pseado ==

Move A reg=Menory with
(TRinstruction indicﬂnr)

b

. 51 TR- d t. —_J—————‘
Slgralt | i~ | inictor 'G' ‘addr 2" of RAM
Internal - BADO-~15 Display e CMM 0~ TRinstruction 1234 Bﬂf:; T
VIAD O~ G— g _ Il _ o -
oao~7_ | B 5 —B\D 00~ Bulk[— | Sulc Main Cartroler 0~3 /0
v HERR Bulk Data Drsplay
[BT i MADO 00~15
il o8 I | Data [™"=""%5¢f —
® Buffer 8[1233
ril e B -
08 15
| S,]

AADSW0~3
Fig. 3 Bulk-RAM interface.

Lately, imany advanced chips and modules enable us
to wpgkbde our system easily, The architecture of
8080 im preferable for us to implement Lisp
system, compared with ordinary small computers.
Especially, the hardware stack pointer may be
suitable fog our purpose, and the speed to
diaplement recursive programs is also fast. Lisp
seems moye suitable to micro processor than any
other language. The Lisp interpreter module n

about 2 k byte spaces., ;

2) Bmploy bulk IC memories to store Lisp data.
For the efficient accessing, the bulk memories are
organized as word not as byte, This enables Lisp
cell to correspond to each word. Considering the
capability of the CPU, the Lisp data space should
be 64k words. In this case, the pointers
necessary to handle Lisp data are represented by
16 bits.

3) Minimize the access time to any bulk memory
word by designing the special interface. Further
explanation will be given later.

4) Implement about 100 system fuctions in ROMs,
and provide users with a conversational processing
system. ALPS/I has as much functions as other
existing Lisp systems do. Unlike other
large-scale Lisp systems which need the overhead
under TSS monitor, our ALPS/I does not have it.
Thus ALPS/I's response time can be comparable with
other Lisp systems.

ALPS/I system consists of an 8 bit micro
processor (Intel 8080), EPROM 16 k bytes
(initially 1702, currently 2716) , RAM 8k bytes, an
inkjet printer (with ptp/ptr), a floppy disk unit
and 64k word bulk memory (1 word = 35 data bits
and one parity bit), (Fig.1,Fig.2). On the stage
of designing in 1974, there was no peripheral
chips like 825x nor single-board computer. To
keep extensibility, we used and modified INTELLBC
8/MOD 80, which was only the system development
support tool sold at a market them. We also made
many board module by hands.

Expansion of memory space by splitting into a
hierarchical organization

M

Fig. 4 An example of the formation of bulk and
RAM addresses from TR pseudo instruction.

In Lisp environment, all the data are
identified and processed by pointers. Pointers
for numerals and atomic symbols are required to be
unique, And the binary tree representation is
merely an orderd pair of two pointers.

Then the design of memory space allocation
and hierarchy affects the performance and speed of
the system. On ALPS/I, the original space of
micro processor is splitted into two spaces of 32k
each. These two spaces have different bit-width
each other. The lower 32k space contains EPROM
16kB and RAM 8kB to hold the system program and
Lisp processor (interpreter). The higher
partition is not a statically accessed storage.
Accessing the higher partition activates the
special interface between bulk word containing
Lisp data and 5 byte RAM (Fig.4). A bulk memory
is accessed by a few instructions as described
later.

Any word on bulk memory consists of 35 data
bits and one parity bit. Data bits consist of 32
Lisp data bits and 3 flag bits. By using 8080's
standard instructions, these words can not be
handled. Any data on bulk memory is transferred
to 5 byte RAM area named bulk-buffer, and then
processed by CPU. We added pseudo instruction to
transfer data. By using this instruction, rapid
access has been available. It generates the
comands and informations which are necessary to
transfer data. It only needs 5 clock to trigger
the interface circuit., (Fig.3,Fig.4)

On transferring data, bulk address must be
arbitrarily specified. But RAM address may be

limitted for several locations, by virtue of the

Lisp characteristics, that is:

1) 4 arguments for system built-in functions are
required at maximum,

2) To process serial operation for linked 1list
traversing or stack look up, at most 2 buffers for
each are enough.

3) Recursive call is not used very often in

system built-in functions (SUBR,FSUBR).
Reckoning with them, we determined that 16

buffers used simultaneously are enough. And by
assuming the arguments for SUBRs are on
bulk-buffers, we can minimize the 1load of

secondary data transfer to other RAM area.
The interface which has been actually made
has following characteristics:

1) It has AAM (Address Association Memory,
16wxl6bits) as RAM buffer address translation
registers. On transferring time, AAM redgister

number is specified in the instruction as a RAM
buffer address.

2) We consider that following TR instruction is
necessary.

TR c,addrl,addr2
c represents transferring command. c¢ =1 3 (bulk

[addrl]) -> (ram[AAM "[addr2]], ... ,ram[AAM
[addr2] +4]) ; c=2 then inverse transfer (ram -=>
bulk); c¢=3: addrl -> AAM [addr2];

To implement this instruction virtually,
memory write operation for upper half partition is
used (Fig.4). With this interface, the
transferring time between a bulk word (memory
cycle time is 0.85 micro second/word) and 5 RAM
bytes (1.0 micro second/byte) takes about 20.5
microseconds. It is comparable to the time to
ordinary 16bit transfer in RAM.

Interface circuit always monitors the
memory-write signal upon higher 32k partition
(memory write cycle with MADI15 is one). If the
interface circuit detects such case, it latches
the data bus (DB07-00) and the address bus
(MADI15-00) . DB07-00 and MADI07-00 form the bulk
address (BAD15-00) . MADI14-12 becames the
command (CMM0-2) . MADI11-08 ©becames the AAM
address (AAMD03-00) .

3) It has an augumented data buffer. It enables
byte-width access for internal bus and 36bit-width
access for bulk memory driver., On transferring
data between RAM and bulk, parity generation and
checking processes occur. The lower 4 bits of
fifth byte are always discarded. Interface is
dynamically stopped for wrong parity data.

4) It provides it's own maintainance panel.

Bulk read/write instruction examples are on
Fig.5. It shows the way of transfer using AAM1
and AAM2. On GBULK1 macro definition, it has one
argument named COM. OOM should be an immediate
value for the concatenation of ¢ and addr2.

x'9n' is read operation with AAM n.

x'An' is write operation with AAM n.

x'Cn' is set AAM operation with AAM n.
On entry of GBULK]1 macro, H-L register is assumed
to contain addrl of TR. H-L register is saved on
execution,

A Portable Floppy Equipment

An 8 inch floppy unit is connected through
the two 8 bit parallel input ports and two 8 bit
parallel output ports. The controller consists of
256 byte RAM(128x2) , command interpreter circuit,
LSI floppy controller chip for IBM 3740-type
format. The data on a diskette may be
asynchronously transferred between a sector and
either two RAM areas on the controller. Each RAM
byte may be randomly accessible and may be

212

randomly filled by the data from CPU, There are
14 coomands. The interface was built by Mori and
reported in [Ida79B].

GBULK1 MACRO COM

MOV A,H

MVI H,COM

MOV M,A ; INITIATE BULK INTERFACE

MOV H,A ; RESTORE H REGISTER

ENDM

LXI H,1000 ; SET AAML AND AAM2

GBULK1 0C1H ; IN ACTUAL ALPS/I-LISP,
LXI H,1500 ; AAM IS SET IN THE INIT
GBULK1 OC2H ; ROUTINE ONLY.

o 3 16 BULK-BUFFERS ARE FIXED
. ; AND THEN NAMED BULKBUF,

. i BULKBUF2,ZZARGl-ZZARG1 4
LXI H,2000

GBULK1 OAlH ; RAM(1000-1004) TO BULK(2000)
GBULK1 92H ; BULK(2000) TO RAM(1500-1504)
LXI H, 3000

GBULK1 91H ; BULK(3000) TO RAM(1000-1004)

FIG.5 EXAMPLES OF THE BULK COMMANDS

Lisp Interpreter on ALPS/I

On programming the Lisp
following conventions are used:

1) Use D-E register of 8080 as a function value
Iegister. All other registers serve as working
registers except for some nucleus functions, BE-L
register is most useful and should be a working
register. D-E register is the next usefull and is
exchanged easily with H-L by XCHG instruction,

2) Do not save and restore registers on every

entry and return. Use PUSH and POP
instructions only in the routines, which calls
another routine and keeps 1local value in
registers, So, the overhead of procedure calling
is minimized,

3) Design modularly as much as possible. System
subprocedure and functions (SUBR, FSUBR) consist
of about 200 modules, which can be independently
assembled. Use stacks instead of explicitly
reserved working storages to minimize cpu-time and
storages for work variables, ALPS/I has only 60

interpreter,

global work variables for about 12k byte
instructions.
4) Use machine instruction effectively. The

PUSH, POP, XCHG, XTHL instructions are used as
much as possisble. By doing so, CALL instruction
enables us to make almost all the programs be
recursive. We can easily wupdate them to
re-entrant modules, The INK and DCX instructions
are used to 16bit-width counting. Zero test is
achieved in a few steps such as, MOV A,H;ORA L;
J2 jzero; which mean if B-L register is zero then

jump to Jjzero. The RST(restart) instruction is
used instead of CALL instruction for the
frequently used system subprocedures to minimize

cpu-time and spaces. Console output routine,
value save routine, EVAL function (Lisp
interpreter nucleus), and console interrupt

routine are resident in RST-area. In any module,
values are kept in register as long as possible.

5) Make the canonical order of Lisp data
correspond to the bulk storage assignments. The
attribute of each Lisp data is distinguished
rapidly in a few steps. For example, consider
ATOM function, one of the Lisp basic predicates.,
It has one argument. It returns true if the
argument is atomic else false. Assuming atomic or
non-atomic boundary is specified by BOUMD, the

following steps check the contents of H-L
register; determine it's attribute; give the
true/ false(nil in Lisp) into D-E register as
value,

ATOM definition

LHILD ZZADR1l ; LOAD 1ST ARGUMENT
MOV A,H : INTO H-L
CPI BOUND/256 ;BOUND assumed that

Jc SETTRUE ;256 byte boundary
JMP SETNIL
SETTRUE LXI D,TRUE
RET
SETNIL, LXI D,NIL
RET

In this procedure, TRUE is the pointer to the
location containing the T atom. NIL is the
pointer to the NIL atom. Each value is determined
at the stage of system generation, because they
are always loaded to the same 1location in the
initialization routine according to the hashing

fuction,
6) Use bulk-buffers as fixed registers.
Arguments for system built=in functions

(SUBR,FSUBR) may be any data on bulk memory and

they are specified by the locations, i.e.
pointers, According to our bulk-RAM interface
design,: 16 buffers can be recognized

simultaneously by the interface (arguments for
FSUBR are grouped as one). We left two buffers
for system works. Then 14 arguments may be
applied to system functions.

7) Separate a save area for the data to be

guarded, from 8080's stack. If we use 8080's
stack as a save area for return address and

temporary data, the processing speed would be
maximized. But, temporary Lisp data should be
guarded against the garbage collector. If they
are in 8080's stack, much time would be necessary
to distinguish them from other saved data. Then,
we provide a stack on bulk to store pointers to
temporary value which is necessary to be guarded.
SUBR's argments are automatically stacked by EVAL
or APPLY routine. So, in system built-in
functions, only list-constructing functions need
to save the temporary value explicitly in the
area, When garbage collection occurs, garbage
collector is activated by the cons-nucleus., It
scans and marks the current cons item, variable

213

the value field of atomic element
Then unmarked words are

binding stack,
and this stack area.,
reclaimed,

SLdUE macros as much as possible.
used.

20 macros are

Development processes

To write system programs, we implemented
cross softwares such as assembler, simulator,
converter and editor on IBM 370 and a mini
computer. All the programs(about 12k steps) are
debugged on s370. The construction of ALPS/I was
completed and the first version of ALPS/I-LISP was
released on Jan.1975, and worked well immediately.
To implement REDUCE-2, which needs about 50k words
to hold, we also used the simulator for initial
loading., After loading it into a floppy diskette,
conversational facilities of ALPS/I-LISP and a
floppy-base editing system has been used to
improve the implementation.

The Structure of the Lisp interpreter

The definition of the interpreter may be

written in Lisp, which was already shown in
[Ida79A] . 1It's major characteristics are as
follows:

1) Top level function is evalquote.

2) The informations which need the unigqueness are
gathered into the same group, and have the same
format., They are stored in the area named H-area.
External representation of the data on H-area is
converted to the internal representation by the
hashing method. The structure of the data in
H-area (H-element) is shown in Fig.6.

H-elements are splitted into two sub-groups,
shown in Table 1. In our format, atomic symbols
cannot have property-list. But associators, the
more convinient facilities, are equipped. We can
find the value of an associator by the cost of
0(1l) . Exampleg are shown in Fig.6 D-F. There are
three types of associators: Harray element is for
property-list and sparse array, assSoCCOmp
associator acts as short-term memories for
function values (assoccomp idea was derived from
[Got74]), prog label associator is for fast label
processing by prog-interpreter. Hashing collision
is resolved by rehashing. We examined several
rehashing algorithms. Then, found that
quadratic rehash on power of 2 table’ is suitable.
Thus, H-area is organized as the power of 2 size,
since folding the value into power of 2 size can
be performmed by masking operation, but for prime
number table size, 16 bit address comparison and
some calculation or division would be necessary.
3) For variable binding, a stack is used.

4) System function 'evlis' is defined as follows:

evlis[m] = [null[m] => *last := NIL; null[cdr[m]]
-> *last := cons[eval[car[m]]; NIL]; T -> cons
[eval[car[m]]; evlis [cdr[m]]]] ; the *last is

used to indicate the last car-element's node, else
NIL. By appending *last to the tail of the
free-list, the created list for actual arguments
for SUBR is immediately collected after apply-ed.
Therefore, garbage collector time decreases. Some
examples shows that about 20% of used cells are

ATOMIC SYMBOLS ASSOCIATORS
ATTRIBUTE| - SUBR FSUBR EXPR FEXPR APVAL HEXPR HARRAY | HARRAY ASSOCCOMP PROGLABEL
MAME ELEMENT ASSOCIATOR ASSOCIATOR
ATTRIBUTE
VALUE 0 1 2 3 4 6 7 8 9 10
CREATED |READ - = DEFINE DEFLIST HEXPR FUNC. PROG
BY ETC. DEFLIST DEFLIST CSEK) ASSOCCOMP ARRAY SETA REFER LABEL
DELETED DELETE
BY GGC - - < = - DEARRAY | DEARRAY GGC GGC
TABLE 1 H-ELEMENT PROPERTIES
A.6Gereral Figure status flags
9 78 LU AN g 2 cell-occupied Tor omic element
b vale Jaratlipl - cell-used)
l key o0 J(;Eocll'adn;(e : kkkkkkk EYLIS ***kkkk
© el el Boa apion e belzs oagh g
5] 8 [3fn HIFNIL EL001
7 T TVSAVE
NTL 7 CALL _ GETCELL
C. Subr 'LESSP with traceflag TVSAVE ; SAVE TOP ADDR. FOR VALUE
xarfesr, |5 EL000 EQU $
0 5 LHLD ZZARG1+2
==L L E it i v . funad
D. hashed array element for father(Tom)=John Sﬁgh ETCELL
8 | Jobn fhekini LELD Zz2Rel
ﬁmu" Tom {003 GgULxl ZH
E. Associator for factoral (10) xcﬁé ; EVAL[CAR[M]]
9 | 362880 [i gggn gUanus‘z
i, i CLD BULKBUF2+2
F. Prog label associator for (PROG ()----A--) RA A
i STA BULKBUF2+4
10} [eclon XTHL GET ADDR. AND SAVE CDR
CBULK1 oafH" ; CONS
1 | A XCHG
1 GBULK1 91H
002 El g ngO CDR[M] IS NIL
Fig. 6 Data structue of H-molecule and its B BLD 772AR
HLD ZZADR1
L GBULK1 91H
EVALE ; EVAL[CAR[M]]
éggg BULKBUF 2
reclaimed by it. The basic idea was also derived LXI H,NIL
from [Got74]. Evlis coding is shown as a sample)S(EIA‘D BULRBUF2+2
in Fig.7. gg% BULKBUF2+4
5) Lisp 1.6-type prog interpreter is implemented .
with label associator and pseudo compiler. Prog EEHB“ %%EEST CONS&EV{\L[.:.] NIL]
interpreter consists of two phases. The first is TVRESTOR ; TOP ADDR. FOR VAL
code decomposition into the intermediate code ﬁHG ; SET IT TO VALUE REGISTER
area. It creates declaration statement for prog SHLD _ ZZADR1
variables. Labels are registered on H-area. This gg'[ll_[. 1 91H
phase occurs on the first execution only. The . .
second is the interpretation of the codes in that EL001 SHin ELLAS}}ULL[M]_)*LAST"NIL
area., Go-function which- has an atomic element XCHG
i.e. unconditional jump, is substituted to direct RET
transferring function, **go, in the intermediate £
area. The definitions of go and **go are shown in ELLAST DS s MAY LINK FREELIST
Fig.8. ZZADR1 DS 2 ; THE ADDR. OF ARGl
6) Loading facility of machine language 24ZARGlL DS i THE VALUE OF ARGl

subroutine is implemented.
software is written in ROM.)

Other characteristics were
[Ida79A] .

(Note that all the

written in

FIG.7 EVLIS MODULE

214

CONCLUSIONS AND THE MEASUREMENTS

By virtue of the adaptability of this system,
the components of ALPS/I hardware have been
modified and replaced easily along with the
technological progressions. For example, the 1702
PROM module was replaced by the 2716 module, the
cassette tape unit by the floppy unit. System
programs are also updated. The current version is
about 2 times faster than the initial version.

Table 2 shows the processing time for same
sample programs, derived from Chang and Lee's
theorm prover® with some other Lisp of large
machines. ERecution time on ALPS/I in Table 2 is
nearly the same as the response time for users.
We may run REDUCE-2 on ALPS/I, and it shows
ALPS/I-LISP'S compatibility and utility. A record
of conversational use of ~REDUCE-2 on ALPS/I is
shown in Fig.9. Loading time of Reduce is about
10 minutes. It is autcmaticall¥ loaded from the
floppy unit with the help of bootstrapping paper
tape. To solve the problem in Fig.9, over several
hours seem to be required by hand, but about 10
minutes is necessary on ALPS/I. The user level
compatibility of our Lisp language to others is
shown by the fact that REDUCE-2 is running on
ALPS/I.

golx)=[atom(z)—~[addr=hassoc [z; pform)—
progn [change-statement (#%go; addr);
seg-counter=addr);
T—label-error(]);
addr=hassoc (eval (x); pform)—eaddr;
T—slabe-error (J)
#%kgo [(x)=setg (seg-counter; x)
pform is an atom, whose value is a current prog-body
top address, seq-counter is an atom fo indicate a
next prog statement to be eval-ed.

Fig.8 go and x#go function.

DTULIM L A 2y

REDUCE 2 (MAR-21-79)

WRITE “HC* N,") = ”,H(N) END:
H(1) = 2%

2
H(2) = 4#X =~ 2

3
HE3) = 8%X - 12%X
4 2
HC4) = 16%X - 48%X + 12
S 3
H(5) = 32%X -~ 160%X + 120%X
3 4 2
H(6) = 64%¥X -~ 480%¥X + 720%X - 120
7 S 3
HET) = 128%X - 1344%X° + 3360%X -~ 1480%X
8 $ 4 2
H(B) = 256%X - 3ISB4%X + 13440%X - 13440%X + 1480

? 7 S 3
HED) 3 S12%X -~ 9216%X + 48384#X -~ 804640%X + 30240%X

FPig.®

Acknowledgement

The autors would like to express our gratitude to
many people who helped gnd encouraged us,
especially to Professor Goto of Tokyo university
for his helpful suggestions; to Professor Mori of
University of Tsukuba for his kind guidance to
prepare the paper. We also thank students and
fellows who assisted us to develop and maintain
the ALPS/I system,

REFERENCES

1. [Cha70] C.L.CHANG; The Unit proof anf the Input
proof in Theorem Proving, J.ACM, Vol 17, No.4,
pp698-707, Oct. 1970

2, [Cha73] C.L.CHANG and R.C.T.LEE: Symbolic lodic
and Mechanical Theorem Proving, 1973, Academic
Press

3. [Got74] E.Goto: Monocopy and Associative
algorithms in an extended Lisp, Technical Report
No 74-03,Tokyo University, may 1974

4, [Hea73] A.C.Hearn: Reduce-2 User's Manual;
Univ. of Utah, March 1973

5. [Hop72] F.Hopgood and J.Davenport:The quadratic
hash method when the table size is a power of 2;
Computer Journal, Vol.1l5, No.4, pp314-315, 1972

6. [Ida79A] M.Ida and K.Mano:A Lisp machine based
on a micro processor, J.of IPSJ, Vol 20, No 2,
pPpl13-121, March 1979. (in Japanese)

7. [1da79B] M.Ida,Y.Mori,S.Kawai and T.Tomine :
Recent Topics on ALPS Project, preprint of
WGSYM, 7-1, IPSJ, March 1979. (in Japanese)

8. [Qua70] L.H.Quam and W.Diffie ; Stanford LISP
1.6 manual, Stanford AI Labs. Operating Note,

No 28.6,1970

9. [Tak78] I.Takeuchi:The report of a Lisp

contest, preprint of WGSYM 5-3 IPSJ, August 1978

ALPS/I Ll1.6* HLISP** UTLISP4,]***
CPU 8080 PDP-10 H-8800 CDC6600

TPU-1 87.0 1.55 4.79 24.64 SEC.
TPU-2 390.0 7.51 13.41 70.71
TPU-3 157.0 3.42 5.68 29.43
TPU-4 194.0 2.65 8.03 41.52
TPU-5 28.0 0.67 0.87 4.38
TPU-6 820.0 2.30 22.85 123.2

TPU-7 150.0 3.56 5.08 26.84
TPU-8 142.0 5.18 3.46 18.68
TPU-9 133.0 4.05 2,66 13.78

* ORIGINAL PROGRAM'S 1)1:\'111\‘3

** TOKYO UNIVERSITY'S LISP>
#*% UNIVERSITY OF TEXAS'S LISP
DATA FROM [TAK78] EXCEPT L1.6

TABLE 2 EXEQUTION TIME OF SAMPLE PROGRAMS

Hermite Polynomials from 1st order to 10th order
by the use of the REDUCE-2 on ALPS/I-LISP

10 8 é 4 2
HC10) = 10243%X - 23040%X + 161280%X -~ 403200%X + 302400%X - 30240

