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EXPERIENCE WITH OBJECT AND METAOBJECT PROGRAMMING IN PCL
: OR :

WHAT DO YOU MEAN WHEN YOU SAY "METAOOPS™?

Kenneth R. Anderson
Michael Thome
Richard Shapiro

BN Laboratories Division
BBN Systems and Technologies Corporation
70 Fawcett St., Cambridge MA 02238

BBN has been working with Portable Common Loops, PCL, the prototype of the
Common LISP Object System, CLOS, for about two years. Interest and use of PCL at

both the object and metaobject levels have increased steadily. We currently have at
least seven major projects using PCL. Interesting applications include:

o KREME - Knowledge Representation, Editing and Modeling Environment
o PARCL - Extentions to PCL for Parallel and Distributed processing

o AlIS - A Tax return classification system forthe IRS <~ 71R¢ A LA Closs fien

\ 209 93
We have also build several system level tools including: ' ;26;6‘ Cr(f:‘).‘k
2 (1S . w
o CONDITION - An error handling system. / ) ﬂi;’_u” ’ Z;g;/,k,‘
-~ L2
1 x‘)n\J19\ e s
o FLOID - A Flavor impersonator \ 543 ‘Y4 Cn a(n 12

16 2
o A class browser and class lattice grapher. 3

|’7
‘(”') 4
0 gggommog‘vymdows - Fully object oriented Common Windows \'1? ~

T ————

pcL and CLOS have several unique features that have proven to be valuable in
developing these systems:

o Multimethods - Methods discriminate on multiple arguments
(unSELFishness)

o Discrimination on nonCLOS objects

o Extendability throughiits Metaobject Protocol.

These features are likely to be as important to the future of objectkind as, say,
inheritance is considered today.

In other object oriented languages, method dispatching depends on only the first
argument. This makes the first object artificially superior to the others and makes
refationships between objects harder to express. CLOS' multimethods eliminates this
problem and encourages programmers to be less object oriented and more behavior
or protocol oriented. This better balances the dual nature of object and behavior.



CLOS methods can discriminate on nonCLOS objects provided by the underlying LISP
implementation. This allows CLOS methods to be better integrated with LISP, and
lets CLOS programmers take advantage of the improved performance of more

primitive LISP objects. It also allows to better coexist with foreign object oriented
systems such as KEE and Flavors.

The Metaobject Protoco! has been used to provide useful extension to PCL, as well as

exploring alternative object oriented paradigms. Examples of metalevel extensions
include:

o Instance and slot locking.

o Activeslots.

o Classes that record their instances.

o Allocating instances from resources.

o Delegation.

o Method discrimination on LISP structures.

The Metaobject Protocol allows new worlds object oriented programming to be

explored. New programming issues have already begun to emerge from this
exploration, including:

o Metafairness - Should the metaobject protocol be biased toward
any particular object oriented feature or paradigm?

0 Metabrotherhood - To what extent can multiple paradigms coexist in the
same programming environment?

o Metaencapsulation - Does a user need to know what paradigm an object
comes from in order to use it or inherit from it.

The ultimate test of the Metaobject Protocol will be if CLOS can be used to write the
language that will replace it.
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An implementation of CLOS

Giuseppe Attardi
Maria Rosaria Boscotrecase

1 CLOS workshop

Palo Alto, 3-4 october 1988

Abstract

We describe an approach to an efficient CLOS implementation on the
basis of a simple semantic model. The kernel of CLOS is implemented in
C language to achieve efficiency. A full integration of classes and struc-
ture is still provided. ‘



1. Introduction

We describe an implementation of CLOS developed for DELPHI COMMON LISP,
which is an extension of KYOTO COMMON LISP. Being able to modify the underlying
CL implementation, we decided to do it whenever we found it convenient. In the follow-
ing we first define the underlying model and then introduce the implementation issues. In
the end we discuss some topics about CLOS specification.

2. The model architecture

The three CLOS primitive metaclasses, built-in-class, structure-class and standard-class,
are not all instances of standard-class as required in the CLOS specification. We don’t
feel that built-in-class and structure-class must be instances of standard-class, which
should only be the default metaclass of classes created by defclass. For example if built-
in-class is a standard-class, it could be possible to invoke some methods don’t make
sense for it as default-initargs. This is why we chose to implement these three metac-
lasses as instances of Class, which is the primitive metaclass. Class is not just an abstract
class, but is a real class built as the minimum common structure of any class [ObjVlisp].
For the same reason built-in-class and structure-class don’t inherit from standard-object,
which describes the default behaviour of standard-classes.

In figure 1 there is the hierarchy among the classes in our kernel.

3. The implementation of an instance

In order to gain efficiency, we introduced a new Lisp data type, named closobject, imple-
menting a CLOS instance. This is a C structure, very similar to the one implementing CL
structure, containing a pointer to the class of the instance, a pointer to a contigous area
storing the slots of the instance and the length of this area.

This approach allows us to easily manipulate CLOS objects inside the kernel of Lisp, for
example to implement generic functions. It also supports the redefinition of classes, since
it is possible to replace the area containing slots without changing the identity of the
object.
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4. Generic functions

We introduced a new Lisp type, named gfun, that represents generic functions as Lisp
objects and is evaluated as a form. This is a C structure containing the generic function
name, the generic function instance and some information useful for cashing methods.

When a generic function is invoked, the code to execute depending on the arguments in
the call must be determined. This code is called the effective method for those arguments.
It would be very inefficient if the effective method would be computed each time the
generic function is called. In order to avoid this, our implementation uses a caching tec-
nique. The first time a method on a specific set of arguments is invoked, the effective
method is computed and stored in a cache table. The table is accessed by a hash key com-
puted from the parameter specializer names. When a new method is introduced for a gen-
eric function the whole cache of the generic function is cleared, so that the next time the
function is called on specific parameters, the effective method is recomputed, possibly
incorporating the new method because of method combination.

5. The implementation of defstruct

In order to integrate the CL structures in the class graph we have modified the CL defs-
truct macro to define a class for each structure type. This class describes the same slots
specified by the defstruct option and it is an instance of the class named structure-class.
The instances of the structure are created as instances of the class associated to the struc-
ture and the low level primitives managing structure instances work on these instances.
So we have a unique internal representation for instances and structures that contains all
the information instead of having two different data types, one for objects and one for
structures. In particular one can apply structure accessor functions to objects which
inherit from a structure class.

The defstruct-defclass integration is essential for supporting CLUE, where contact class
inherits from xlib:window, which is a structure dealt by the CLX package.

Two issues are still open in the field of the integration of classes and structures. The first
one concerns inheritance, because a some checking must be done to avoid a class could
inherit from more than one structure class. The second one involves the print function of
a structure, which has three arguments (object stream and depth) while print-object has
just the first two.

6. Some suggestions about CLOS
We present a few remarks on the CLOS specification.

The model architecture presented here is slightly different from the one described in
Chapter 3 of the CLOS specification, which has different relationship among the primi-
tive metaclasses. We propose to discuss it in order to see which could be the minimal and
cleanest model.



CLOS introduces the concept of prototype instance. A prototype instance is an instance
of a class and can be a completely blank instance as created by allocate-instance. The
only requirements for this instance are that it will respond properly to class-of and it will
allow the right selection of the method if passed as argument in generic function call. For
example the macro defclass expands to a call to the generic function add-named-class
passing it a prototype instance of the class specified by the :metaclass option in the
defclass form. Here the use of the prototype instance allows to invoke methods passing
them as argument the class to define before having the class as object. We feel that the
introduction of the concept of a prototype instance is an unnecessary complicaton. It
also invites confusion between the new class you are creating and the metaclass which is
instantiated to make the prototype instance.We suggest instead that the concept of meta-
class is sufficient to implement the desired behaviour simply by invoking add-named-
class with the metaclass as an argument. Sometimes this approach could require the
introduction of new metaclasses just for the purpose of defining an add-named-class
method, but we don’t think this is a significant overhead. For example we had to intro-
duce the classes standard-metaclass and structure-metaclass just to provide the add-
named-class method used by their instances standard-class and structure-class respec-
tively. An alternative solution could also be to define the add-named-class method with
(eql object) as specializer for the first argument. '

Another topic is about the initialization arguments used during the creation of an object;
we suggest that the :default-initargs option to defclass should not be provided. In fact it
introduces an unnecessary complication in the CLOS specification and implementation.
It is still redundant because the same behaviour can be obtained giving initforms to key-
words in the initialize-instance method. Since the order of evaluation of defaults value
forms is undefined, its behaviour is unpredictable. Moreover its use is difficult to under-

stand for a user.

We feel that the CLOS specification should not address any issue that is strictly imple-
mentation dependent. For example, CLOS forsees a mechanism for optimizing calls to
slot-value at compile-time. We think that each implementation should be free to provide
its own optimization without being bounded by a predefined protocol. Moreover, CLOS
specification describes the shared-initialize generic function, which fills the slots of an
instance through the use of initializaton arguments and initform forms. shared-
initialize is called by the system-supplied methods to initialize a new instance and to re-
initialize an old one. Providing a generic function like it means including implementation
details in the specification of a standard.

In the end we suggest minimizing the number of concepts introduced by the language.
This goal can be obtained without losing the generality and the flexibility of the resulting
system.

We have experimented the extendibility of our system implementing the main features of
KRS, a concept based system for the implementation of different knowledge representa-
tion schemas, in CLOS.



Ryuichi Aoki
System Software Development Department
System Technology Center
Document System Unit
Fuji Xerox Co., Ltd.

We have been developing an intelligent system on PCL. And | am just taking charge
of the graphic interface tool. An overview of the graphic interface tool is following.

And | have some opinions about CLOS programming environments, extensions, etc.
But this paper does not include them.

e T I IR R T B e

From the point of application programmer’s view, especially from intelligent system
builder’s eyes, it is important to describe the world that he deals with. Object
oriented programming environment, CLOS provide us class-instance methodology
for framing simulation models with object system. Then, not only defining of classes
and methods, but also organizing objects should be important.

Our graphic interface tool on CLOS intends to support both application builders who
organize the object models, and end users who interacts the models. And there are
three kinds of view to support for them.

1) View of browsing networks of objects in the model

The relation of objects are visible and editable on the browser using two graphic
items, ‘link’ and ‘node’. The program interface to specify the relation is prepared. A
developer can define the browser for an arbitrary relation by the program interface.
And beforehand the graphics interface tool provides two convenient browsers:

Model browser makes the part-of relations of objects visible and editable. Each

node corresponds to a CLOS object or LISP object. A developer is able to organize

objects by the browser.

Class browser makes the kind-of relations of classes visible. Each node corresponds

go a class. A developer is able to define/redefine classes and methods by the
rowser.

2) View of focusing an object

Some objects displayed on Graphic interface windows are editable in their proper
windows. Specified slots of objects are editable in their proper windows.

3) View of exhibiting variety aspects of object model

Actual object models must be organized complicatedly, to be impossible to display at
once. Object panel is the window to see and operate the status of the objects.
Things those are displayed as the graphic items on the object panel are
programmers’ specified. Some graphic items are connected with certain objects of
the actual object model, and others are not.

Our user interface tool defines more than twenty classes for visible items. They are
categorized into three types, they are :



1) Items which can be connected with an object

These items can describe the status of the connected object by pictorial
representation, for example, texture change, bitmap, text, blinking, and so on.

Also value of the connected object can be handled through text editing frame,
gauge frame, toggle switch, etc.

2) Items which can activate procedures

Functions, methods can be activated with argumehts by clicking on an item. This
intends to support procedural manipulation on the object model.

3) Simple graphical image ‘

This tool provides flexible functions on uniform operations. For example, certain
object which is connected a graphic item can be copied from/to a panel and a
browser with the same operations.

This tool is framed on the CLOS object system dominating Interlisp-D
window/graphic system. About forty classes are defined for the tool.

|0



Configuration and Version Management for CLOS-based Products

James Bennett, Chris Clifford, John Dawes
Coherent Thought Inc.
3350 West Bayshore Road, Suite 205
Palo Alto, CA 94303

For discussion at the CLOS Workshop, October 3-4, 1988. On-line queries
about these issues may be directed to jbennett@coherent.com.

1 Introduction

Coherent Thought develops problem-specific expert system tools and knowledge base develop-
ment environments for solving commercial diagnosis, configuration management, and financial
risk-assessment problems. Like most expert system tools, the basic tools are independent of
application-specific knowledge, however, unlike those tools, our systems provide a basic problem-
solving approach and vocabulary for the problem and the system. Exploiting the given structure of
the problem-solving approach permits knowledge base development, maintenance, and explanation
facilities to be specialized to the particular problem and application in an effective manner.

Each of our products is an extensible “template”, built to be customized first to particular ap-
plication market areas and then, via customer knowledge base development, to specific applications
(e.g., diagnosis of electro-mechanical devices, then computer networks or automobiles, etc.). We
expect to license our products to professional software application builders (systems integrators,
hardware vendors, etc.) as a set of modules that they can embed in their existing or new software.
We expect the knowledge bases for these delivery systems to be developed and maintained on
workstations using sophisticated knowledge-based knowledge acquisition tools and that the actual
systems will be delivered in different environments, including MVS/CICS on IBM mainframes and
various UNIX- and OS/2-based workstations.

2 Configuring CLOS-based Systems for Product Release

We construct our product templates using Common Lisp and CLOS. Each template itself is large
and complex, and is developed by a muiti-person team. The combination of Common Lisp and
CLOS provide an extremely flexible software development environment for the construction of our
template products. Following the OOPS methodology, we expect to make substantial re-use of
portions of our code between templates and to isolate operating environment-specific aspects of
the templates, capitalizing on the extensive object-oriented programming metaphor that CLOS

L




provides. We expect the use of these techniques will permit us to rapidly extend and enhance our
product offerings as our customers’ requirements change.

The production, documentation, and maintenance of software products, however, requires
proper configuration, release control, and tracking of the component elements of the product.
Under most object-oriented programming schemes, including CLOS, the number and complexity
of potential software configurations can increase quite rapidly, potentially multiplying the burden
of tracking and maintaining the state of each product release. In particular, there is a tendency
to proliferate a large number of partially-functional components from which final modules might
be constructed (“mixin madness”). A tradeoff exists, then, between exploiting the flexibility the
OOPS development tool provides for designing the software and managing the product mainte-
nance, testing, and documentation requirements.

To address this tradeoff and create delivery versions of our products, we expect to combine
standard release control techniques and systems with O OPS-specific programming disciplines and
proprietary techniques for creating and compiling portable delivery versions of the tools in the
C and 370-assembly languages. The specific disciplines and tools will, of course, be developed,
adapted, and honed on the basis of our particular experience and market requirernents. Many
of the requirements and principles, based on standard software engineering methodologies, can
be anticipated, however, and existing tools can be investigated. We look forward to the CLOS
workshop providing a forum to discuss these issues, both in principle and based on practice.

Using a prototype of one of our product templates, we have begun one set of experiments with
a configuration discipline and CLOS/LISP-based support tool set. The prototype problem-specific
template was developed in CLOS in a relatively unrestricted fashion as a specialization of a shared
“core” of basic reasoning and knowledge-base maintenance facilities. The prototype was reviewed
and a set of provisional “module” boundaries were identified that correspond roughly to expected
released product elements for the purposes of documentation production, inter-facility testing, and
update maintenance.

We also chose these boundaries looking to restrict the kinds of inter-module reference and
specialization, which in turn would allow us to reduce or eliminate portions of the full CLOS
facility in the delivery environment. Based on those initial observations, we have developed a
process of converting development CLOS systems into delivery CLOS modules according to the
product module declarations. We have also developed an implementation of a CLOS subset to
support modules based on these assumptions which is significantly smaller than the current CLOS
implementation and which requires significantly reduced overhead to support the final module
functionality. This will be especially important in delivery systems where no further development
will occur but where efficient use of memory resources are at a premium and execution speed is
critical, as is the case in our target transaction processing market. We will discuss some of our
initial experimental results at the workshop.

Although our initial experiments are promising, they deal only with the early stages of product
configuration, version maintenace and support requirements. We look forward to talking with other
system developers at the CLOS workshop on these extended “software lifecycle” problems and their
solutions for OOPS- and CLOS-based products. In particular, we would like to discuss:

¢ Coding styles and development disciplines that aid conversion of prototype and development
code to delivery versions of systems

e Ideas and principles for documenting and advertising functionality for OOPS-based systems.

e Experience with version maintenace and configuration of large-scale OOPS-based systems in
general.

| 2



o Experience with existing LISP-based software configuration and tracking systems.

e Experience with existing, non-LISP version maintenance tools (e.g., SCCS, RCS, Amplify,
etc.), especially as applied to OOPS-based and LISP-based systems.
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The Importance of Being Meta

Daniel G. Bobrow & Gregor Kiczales
Svstem Sciences Laboratory
Xerox PARC

Position paper for first CLOS Workshop
October 3rd and 4th 1988

One of the most important capabilities Lisp provides is that when writing
a Lisp program it is possible to build a specialized language tailored to the
problem at hand. This language can be an extension of the underlying
Lisp, and it can be embedded into the underlying Lisp. Programs can be
written which use both the traditional Lisp and the specialized language.
The resulting code is more perspicuous and is often more efficient as well.
An excellent description of the importance of this capability was given by
Sussman at the 1988 Lisp Conference [1].

The two major traditional Lisp-Object-Oriented-Languages (Flavors
[2|[3] and Loops {4.) have not provided this capability. The designers of
these languages took advantage of this capability - they embedded their
languages in the underlying Lisp - but did not provide this capability to
the users of object-oriented language. No documented mechanism supports
definition of object language program elements which follow evaluation rules
which are specializations of the standard ones. For example, a programmer
cannot define a class with different rules for instance variable access and
then mix that class freelv with other standard classes.

CLOS is an extension to Common Lisp 3 which makes Common Lisp
itself be an object-oriented programming language '6]. The integration of
types and classes means that any Lisp data structure can be treated as an
object. The integration of function calling and “message sending” means
that generic dispatch is transparent to the caller. The metaobject protocol

| 5



ensures that the capabilities described above apply to the object oriented
mechanisms in the language as well as the traditional Lisp mechanisms.

The Metaobject Protocol Provides Traditional
Lisp Power

It is the existence of the documented metaobject protocol which allows
CLOS to retain Lisp's capabilities to build and embed specialized languages.
In traditional Lisp, this capabilitv comes from the ability to manipulate pro-
gram structure directly, and to extend the language by defining macros.

The metaobject protocol specifies that the the basic program elements
are represented as first class objects called metaobjects [7][8]. These objects
are instances of specified metaobject classes. Specified generic functions
manipulate the metaobjects to provide the behavior of the system.

User programs can manipulate the metaobjects directly. This corre-
sponds to the ability in Lisp to manipulate programs directly. By defining
specializations of specified metaobject classes, users can define program el-
ements that have behavior slightly different than the standard CLOS be-
havior. This corresponds to the ability to extend the behavior of the Lisp
interpreter by defining macros.

Examples of the Power of Meta

The design of CLOS itself takes advantage of this ability to directly manip-
ulate program objects. The initialization protocol described in chapter 1 of
the specification ‘9] is an example of a higher level language construct built
with more primitive CLOS program elements. The initialization protocol
uses the ability to directly manipulate generic functions and methods to
determine the full set of legal initialization arguments. This allows the ini-
talization “language” to implement its own extension of the CLOS kevword
argument congruence rules.

Since the Lisp community has had significant experience with declarative
method combination, CLOS provides a specialized language for controlling

16



method combination. There is no corresponding language for describing
how conflicts in slot descriptions are to be resolved (the default behavior is
simple shadowing). The metaob ject protocol makes it possible to change the
default behavior, and Lisp allows the easy definition of languages to control
the new behavior. Because users can extend the behavior of the underlying
program structures directly, these specialized languages are not limited to
what can be expressed with the base language.

The PCL user community has provided other examples of this power
provided by the metaobject protocol. In this community many users have

extended the standard behavior of the object system to suit their specific
needs.

The Dangers of Standardization

One question which has been asked is whether it is wise to standardize on
a language which includes new features, particularly an idea as new as the
metaobject protocol. This is an important question and one which deserves
consideration. It can be broken down into three smaller questions: will the
standardized language be useful; can it be made to perform well; and will
the standardization stifle research?

Will CLOS be Useful?

There are many reasons to expect that CLOS will be a useful language.
It’s basic object-oriented features are revisions of those found in Flavors,
Loops and CommonLoops. The revision of these features has been done
quite carefully, and tremendous attention has been paid to the comments
received over more than 5 vears from users of the previous systems.

The metaobject protocol only existed in CommonLoops previously, but
already it has been used extensively. Even given its early and unsupported
implementation stage, many large projects have switched to using PCL pri-
marily because of the power the metaobject protocol provides.

| 7



Can CLOS be Implemented Efficiently?

Run time efficiency is dominated by the time to call a generic function and
by the time to access the slots of an instance. Efficient implementation of
these is complicated by CLOS features which support multiple inheritance,
method combination, and the ability to change class definitions and have
extant instances updated to the revised definition.

Techniques already exist for dealing with each of these problems, and
several implementation efforts have been able to combine these techniques
effectively. There are techniques for hoth stock and custom hardware. [n
addition, the metaobject protocol provides a sound footing for allowing the
user to control special block compilation or “staticizing” techniques; there
is promising research in this area.

An additional question is whether the existence of the metaobject pro-
tocol, with the extensibility it provides, prevents efficient implementation.
While it is true that the existence of the metaobject protocol complicates the
maintenance of internal datastructures such as caches, it does not interfere
with the ability to use any of the existing or envisioned runtime implemen-
tation techniques. This has been demonstrated with PCL which has been
used to experiment with a wide range of implementation techniques while
retaining metaobject protocol extensibility. The existence of the metaobject
protocol only requires that dependencies of each implementation technique
be explicity represented.

A critical point to be made about CLOS performance is that it must
be measured correctly. The ratio of generic function call time to ordinary
function call time is often misused to measure CLOS performance. Since
this ratio can be expected to be about 2 to 1, people often say that a CLOS
program will be onlv half the speed of a comparable traditional Common
Lisp program. This is not the case. A program written using CLOS is often
likely to be faster than a comparable traditional Common Lisp program.
To see this, it is important to understand what it means for a traditional
Common Lisp program to be cormparable to a CLOS program.

Generic function call time should be measured against not only the time
to call an ordinarv function, b ‘i also the time required to do the type
dispatch (i.e. tvpecase) required to start executing the correct code. This is
an appropriate comparison because the traditional Common Lisp program
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has functionality comparable to the CLOS program.

The following two programs show corresponding programs written in
CLOS and traditional Common Lisp. Of course the CLOS implementation
retains greater flexibility since methods can be added to area without editing
the original definition.

Ordinary Common Lisp:

(defstruct circle)
(defstruct square)

(defun area (shape)
(typecase shape

(circle ...code for area of a circle...)
(square ...code for area of a square...)))
Common Lisp with CLOS:
(defclass circle () ())
(detclass square () ())
(defmethod area ((c circle)) ...code for area of a circle...)
(defmethod area ((s square)) ...code for area of a square...)

Will Standardization Stifle Research?

Perhaps the most important question is whether standardizing CLOS will
stifle research. Rather, the opposite is likely to be true. The metaob ject
protocol exposes the underlving program structure. It allows programmers
to experiment more easilv with variations on that structure. Rather than
stifle research, standardizing CLOS will make this vehicle for experiment-
ing with Ohject Oriented Programming Languages widelv available and so
should encourage more widespread research. In the PCL community there
has been more widespread experimentation with variations on the svstem
than existed previously in the Loops and Flavors communities. These in-
clude small extensions, such as object naming mechanisms; medium sized
experiments such as special slot inheritance mechanisms; and large exten-



sions like connections to persistent storage and large KR systems. The
metaobject protocol provides a new way of looking at a standard. Unlike
other OOL's such as Smalltalk (10] or C++ [11] it provides not just a cur-
rent way of doing business, but a way to explore the future while sharing a
common base.
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This paper shows some possible uses of CLOS metaclasses at the enduser
level as well as at the implementation level. Making metaclasses accessible to
the user enables him to customize the svstem for his own applications. Using
metaclasses at the implementation level makes the global task of describing
the system as a uniform whole easier. \We claim that CLOS metaclasses are
necessary at both levels and will help us to suppress the boundarv between
endusers and implementors. [n this paper we are not concerned with the
efficiency of implementation issues. Our main concern is only to practice,
understand and teach CLOS by using its oncoming meta-ob ject protocol.

1 Programming with Metaclasses at the User
Level.

In this section, we take two examples to describe some possible metaclass
uses which can be conducted by a enduser in order to add new functionalities
inside the system.

1.1 Abstract classes.

The first example is concerned with the definition of abstract classes as
they can be found in Smalltalk-80 ‘91,  The purpose of such a class
is to be used inside the inheritance lattice but not to be instantiated.

*This research was pactiv funded by the GRECO de programmation du CVRS.
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Adding abstract classes to CLOS can be achieved by the definition of the
new metaclass abstract-class and by the definition a new method for
make-instance. All abstract classes will be instances of abstract-class.
A simple way of avoiding the instantiation of these classes is to produce
an error when make-instance is applied to them. Thus -wve just have to
describe make-instance which produces the appropriate error.

;:; The metaclass.
(defclass abstract-class
(standard-class)
O
:metaclass standard-class)
;;; The method for make-instance.
(defmethod make-instance :before ((object abstract-class) ...)
(error "This class S should not be instantiated"
(class-name object)) )

1.2 Partwhole hierarchies.

As a second example we will introduce an implementation of Borning's
Partwhole hierarchies 4 "Li.

Partwhole hierarchies are a different way from inheritance of seeing com-
posite objects. With this scheme, objects are built with various independent
parts which are instances of some given classes. When the “whole object”
is instantiated, its parts are automatically and recursively instantiated®.

Only one metaclass, Part-Whole-class is necessary for the descrip-
tion of a partwhole hierarchy. This metaclass adds some new slots, thus
permitting the description of both the parts and the associated classes of
these parts. Classes which use parts should be instances of the metaclass
Part-Whole-class. Methods should be added to generic functions involved
in the class definition in order to transform parts into slot descriptions. The
instantiation process of classes which include parts should also be modified
in order to instantiate automatically the parts of each new instance.

;;; The metaclass.

(defclass Part-Whole-class
(standard-class)
(Parts Part-Classes)
:metaclass standard-class)

:3; The method for initialize-instance

' A Smalltalk-80 implementation of partwhole hierarchies is discuss in T
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(defmethod initialize~-instance
:before ((object Part-Whole-class) ...)

Transforms all parts into slot descriptions.
.)
;+: This method 7ill generate the appropriate method
;i3 for initialize-instance for the instance of part-class.
;33 It will perform the instantiation of the parts.
(defmethod initialize-instance
:after ((part-class Part-‘hole) ... )
(with~slots (parts part-classes)
(eval ‘(defmethod initialize-instance :after
((instance ,{(class-name (class-of instance)))
&rest args)
(with-slots ,parts
,8(do ({(parttparts (rest part))
(class parts-classes
(rest class))
(result))
((or (null part)
(null class))
(or result ‘(setf ,Qresult)))
(push ‘(make-instance ’,(first class))
result)
(push ,(first part)
result}))))))

2 Programming with Metaclasses at the Imple-
mentation Level.

In this section we trv to show that implementing Class taxonomy languages
can be made easier by the use of metaclasses. We brieflv present two at-
tempts at designing a minimal kernel which must be able to support a full
CLOS. Our goal is to identifv the metaclasses which must define this kernel.
Then in order to have a full CLOS we have to explain the new metaclasses
and their relations in the class lattice.

As in 3] and {10], the basic idea is to describe CLOS itself as a CLOS
programme with classes and methods.

25



2.1 From ObjVlisp to CLOS.

For several vears we used ObjVlisp ;5} & as a basis for experimenting with
metaclasses. Although the main goal of this extension of Lisp was to explain
Smalltalk-80 metaclasses, it has been used for the description of several other
class-oriented paradigms. Naturallv we tried to use it for the description of
CLOS as an embedded svstem of OhjVlsp '6: "10i. One of the main ideas
of ObjVlisp is minimalitv as reflected by its circular architecture which is
composed of two classes onlv: Class and Object. We tried to work out
these essential points of CLOS. This led us to point out three basic classes:

CLOS-class the standard class for all CLOS classes,
CLOS-object the class inherited bv all CLOS classes,
CLOS-slot-description the class which describes slot objects.

Note that neither generic-function, method nor method-combination ap-
pear above because they can be built from these classes.

CLOS-Object R EEOS-slot—description

Figure i: [nserting CLOS inside ObjVlisp.

The connection of these classes with the classes of the ObjVlisp kernel
was accomplished by a specific metaclass which described some of the basic
CLOS behaviours in order for CLOS-class to react like a class of CLOS.

However this was not completely satisfactorv mainlv because ObjVlisp
makes some different assumptions from CLOS at the language level.
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2.2 From uCLOS to CLOS.

From the previous description we outlined a reduced set of classes which can
be used for a full description of CLOS compatible with 2. Let us call this
kernel uCLOS.

pCLOS is defined by three classes:

standard-class the standard class for all pCLOS classes, this
class is self-instantiated.

standard-object the class inherited by all uCLOS classes,

standard-slot-description the class which handles the slot
description.

A first step towards the description of CLOS is the connection of the
class lattice with the underlving tvpe lattice. This relation is accomplished
through the metaclass Type. Then T becomes an instance of Type. The
definition of T as a class implies the modification of the inheritance of
standard-object which now inherits from T.

Generic functions; methods and method combinations can be added
to this kernel by the simple description of their related classes,
generic-function, method and method-combination.

/
li

N ;
'Standard;CIass

-

Standard-Object -F : ot-Description

lass

Figure 2: uCLOS extented to CLOS.

At this stage we hold all the basic functionalities required for the descrip-
tion of a complete CLOS. This task could be made easier by the existence
of our pCLOS. [t could be achieved through a new inheritance lattice of
specific classes connected to that of uCLOS.
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3 Conclusion.

Metaclasses are useful for anvone who tries to customize the system. Using
a meta-object protocol gives access to any component of the system thus
allowing both its understanding and modifications. Since CLOS has become
the standard object svstem for Common Lisp it is high time to teach it.
We think that in order to understand all its new - and often complex -
mechanisms, an approach developing the CLOS metaclass architecture will
make this task much easier.
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0. Abstract

In recent years, at Siemens we have developed a number of applications using a
subset of the object-oriented programming facilities of KEE. Currently it is our
group's intention to use CLOS for the development of future in-house
applications. In order to do so, we are now working on an extension of CLOS,
called CLOS-XT, to suit our specific application development requirements and
also on a transformer which automatically translates the object-oriented parts of
existing KEE knowledge basesinto CLOS-XT.

e R
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1. Extensions to CLOS —

Our CLOS extensions, called CLOS-XT, arise out of the specific requirements of
the applications to be developed: In order to assist users who are used to KEE
UNITS facilities in getting acquainted to CLOS we add a number of helpful
properties to CLOS. At the same time this makes it easier to transform existing
KEE knowledge bases into this extended CLOS. Some of the extensions are the
following:

- In addition to the CLOS defined slot options we offer an inheritance
option, which allows inheritance to be terminated and it is also our
intention to provide the possibility of choosing a user defined form of
inheritance . There is also a documentation option for eachslot.

. We extended the slot options in defclass to not only allow for system
defined options but also for the specification of further user defined
annotations. These are described by the possible annotation options
name, initform and documentation.
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- Instances can be named objects. Every class 'knows' its instances.

- Classes and instances are assigned to and administered by knowledge
bases. ’ _

- In addition we intend to offer a variety of functions in order to manipulate
classes and instances (like removing classes, changing a class's knowledge
base, adding a new superclass, etc.) or to obtain information about them.

2. Transforming KEE Knowledge Bases into CLOS-XT

Switching from the object-oriented programming facilities of KEE to CLOS-XT

makes it necessary to convert existing KEE knowledge bases. This consists of two

tasks:
2.1. Transforming KEE knowledge base files into CLOS-XT files
2.2. Transforming KEE functions

2.1. Transforming KEE Knowledge Base Files into CLOS-XT Files

The main problem here is the conceptually different view taken on

- KEE units and CLOS classes and instances

- KEE own and memberslots and CLOS instance slots
At present we are implementing an algorithm which transforms the list
structures describing units into definitions of knowledge bases, classes and
instances. By parsing superclass.parent.list, member.of.parent.list and
member.slot.list a distinction can be made about whether one is dealing with a
knowledge base, an active value, a unit that can be treated as an instance, or a
unit that is to be treated as a class. Depending on the presence of own slots and
theirinheritance, artificial meta-classes need to be created.
KEE methods are not attached to slots of the respective classes but are
transformed into CLOS methods; active values become methods.

2.2. Transforming KEE Functions
Here again there are KEE functions referencing units which have to be

transformed into functions with different behaviors for classes or instances. This
is determined by parsing the functions' parameters. We only transform functions
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that are relevant at run-time and therefore are to be expected in KEE knowledge
bases. Work on this module as yet has not begun, and therefore it is hard to

forsee how well this can be done as it might prove difficult to model the correct
dynamic behavior from the available information.

3. Conclusion

CLOS-XT is being realised on the meta object protocol level, the transformer is
being implemented in CLOS-XT. It seems that a fully automatic transformation 1s
not possible and that not all KEE functionality can be transformed cleanly
without changing most of the CLOS properties. This is not reasonable and aiso
not necessary. We therefore had to impose some restrictions on current
developments with KEE UNITS, and are forced to mark places in the transformed
files where manual corrections might be needed. Examples for these restrictions
are not to allow multiple class parents for an instance (i.e. multiple member
parent links) or restricting slot values to single values. We nevertheless expect
the automatic transformation to be a worthwile support and hope that it will
assist users in getting acquainted with CLOS-XT. CLOS-XT and the transformer
are not planned to become company products, but are intended to be used for
internal purposes only.
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Abstract

MITRE’s role as a Federal Contract Research Center involves the
MITRE Washington Al Center in the specification of DOD systems
acquisitions and the rapid prototyping of specific DOD applications
on diverse hardware configurations. This role requires us to review
currently available expert software packages as well as develop appli-
cations from either in-house or public domain software bases. In the
latter effort, the use of a common software base to facilitate quick
gearing up for prototypes is essential, but is complicated by the need
to support a diverse range of underlying hardware suites, windowing,
and graphics display systems. CLOS addresses a major part of these
issues.

MITRE is seriously interested in CLOS as a vehicle for moving
application-layer software across hardware boundaries in a timely man-
ner. The emergence of CLOS as a underlying object representation
language and combined with a common hardware driver (as in the
X windowing svstem) in CLUE/CLX provides an attractive and inte-
grated solution to linking semantic networks, graphical displays, and
other user interface presentations in portable expert svstem applica-
tions. “Extensions” to CLOS in the form of meta-level reconfigurations
to implement contending inheritance strategies and datatvpe definition
facilities is anticipated.
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1 Semantic Networks and Rule Interpreters

Many of the MITRE prototype expert systems employ semantic networks
in one form or another. Their actual representations have in the past been
driven less by the functionality required for an inheritance system than by
the representation given by the specific rule interpreter chosen for the effort.
Some of our rule languages are built on top of FRL, others on FLAVORS,
some DEFSTRUCTS. The MITRE Washington AI Center has a new soft-
ware support task to develop a general-purpose inheritance system written
in Common Lisp for portability. CLOS is an attactive candidate for the
implementation language.

2 User Interfaces

We will also be extensively engaged in developing an interface to the in-
heritance system. We want to avoid the need to have machine-specific user
interface specialists for systems prototyped on either the Symbolics, SUN,
MAC-II, Explorer, etc., (Sorry Gregor, we don’t have any XEROX systems).
Provided all our major hardware candidates support some form of Common
Lisp and X (admittedly a big assumption), a user interface language built
on CLUE would serve us extremely well, perhaps reducing prototyping time
by as much as a half. In addition, new capabilities developed during one
effort would more easily port to the next. We expect considerable effort to
be spent on CLOS and CLUE in this regard.

3 Graphics Displays

We have an in-house graphics displav subsystem called MMI that presently
runs solely on the Symbolics (it used to run on the LMI Lambda as well}.
The package performs some extremely useful coordinate svstem mapping
and display tasks, and has been used widely at MITRE for prototyping
dynamic situation displavs. [t is a large system requiring near constant care
and feeding by a Symbolics wizard. Several of the original designers and
implementers have since moved on, resulting in periodic trauma as new bugs
are introduced and features are eliminated. We reallv need this system to
be based on a device-independent windowing system, such as X. In addition,
the maintainability of the MMI system would increase tremendously as the
underlving software is no longer home-grown, but a product of a wider
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debate in AI community, with its own user base and bulletin board discussion
forum.

4 Strong Datatyping

Our work on a database definition facility stands at the intersection of CL,
CLOS, and CLUE. It is based on a menu-driven control of database composi-
tion, where those types are entered in the inheritance system and potentially

reasoned about.

5 Summary

The above are major areas of interest in CLOS at MITRE, all of which seem
to be addressed to one degree or another by the CLOS and CLUE devel-
opments currently in progress. We have been using PCL as a provisional
tool for nearly a year, and have constructed a small classification system
using PCL as the supporting object language. The MITRE Washington
Al Center will be investigating these tools in a software support effort over
the next year or so, and we will be attempting to develop an integrated
set of device-independent tools for developing semantic networks, graphi-
cal displays, datatyping languages, and general user interfaces for the rapid
prototyping environment.
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Introduction

MICE is a tool for defining constraint satisfaction problems and solving them using a
modular intelligent search engine. The search engine is modular in that it allows the
specification of a set of intelligent search techniques to be used within a basic
framework to generate a specific problem solving algorithm. In addition, MICE
supports the use of a variety of representations for constraints, variables, and
domains. MICE is written in Xerox CommonLisp and PCL; the user interface relies
additionally on the Xerox Lisp window system.

More Detail

A constraint satisfaction problem (CSP) consists of a set of variables each associated
with a domain and a set of constraints on these variables. Problem solvers for CSPs
on serial machines generally take the form of a backtracking algorithm. Research on
CSPs tends to focus on particular problem solving strategies for such problems, often
assuming a particular domain or constraint representation and a specific type of
Eroblem. MICE allows the inte?ration of these strategies into a general

acktracking framework by defining a number of problem object classes each using
a different representation, but sharing a minimum protocol.

Each of the problem objects, such as a domain or a constraint, is selected from a set
of classes. The protocol defined on the root node of the class graph is applicable to
all object representations and can be relied on by any solution strategy; more
specialized representations might define more specialized protocols which only
work with a limited set of solution strategies. The problem-solving strategies,
represented in the current version as methods, themselves take different forms
depending on the particular combination of problem object representations used in
them; CLOS multi-methods are particularly useful in this capacity.

We also define a solution specification object, whose various slots specify different
parts of an overall solution strategy. The general problem solving algorithm is then
filled in by the pieces in the solution specification object. The class of the solution
Sﬁecificatnon may even implicate a more specialized problem solving algorithm when
the combination of methods is known to be reducible to a more efficient algorithm.
For example, simple chronological backtracking requires less state information than
used by other intelligent mechanisms; we can use a simpler general framework for
the class of chronological solution specifications.
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This leads to certain peculiarities in the object graph. Each slot in the solution
specification object has a number of choices, most of which can work with a large
combination of each of the others. One way to represent this state of affairs would
be to provide mixin classes for each choice of each slot and define problem-solving
methods on all combinations of these mixins. However, this would result in an
explosive growth of classes and methods - most vegl similar - and would be largely

unmaintainable. Atthe other end, we could provide a ver generic problem solving
strategy and not maintain subclasses of the solution spechxication, relying on the
user to fill in all slots of the solution specification before running the problem solver.
This approach fails to take advantage of the natural synergy of certain combinations
of slots in the solution specification.

The approach we have chosen falls somewhere in between. We define a completely
generic problem solver, and provide a small set of subclasses to the most generic
solution specification on which more specialized problem solving methogs are
defined. Any of the slots in the solution specification may be changed by the user,
but the more specialized problem solvers may not be able to deal with any
combination. This conflict between a large lattice of mixin objects and their
combinations, with many specialized methods, and a small graph of objects with a
more general but more inefficient interpreter is likely to occur often in
gbject_-oriented programming; adequate solutions depend largely on the particular
omain.

There is often considerable interaction between the various modules of the problem
solver; several are complementary consumers and generators of problem state.
Thus, we define a search state object which can be used for communication between
the modules. The search state object can be subclassed for specialized and closely
interacting problem solving modules. This solution is not ideal. Ultimately we
would like to reduce the reliance on one monolithic state object by defining
larger-grained problem solving modules which would package together generated
and consumed state and thus obliviate the need to define this state when the
modules aren’t being used. '

The MICE interface class graph closely parailels the problem solving object class
graph. An interface unit consists of a problem definition window and a problem
solution specification window (and some control menus). The problem specification
window contains cells for each domain, variable, and constraint in the problem;
these display a small amount of useful information for each object. The cells can be
expanded into problem object editors; the format of the editor depends on the class
of the problem object. A domain editor differs from a constraint editor; an
extensional domain editor differs from a range domain editor. The problem
solution window allows the selection of the set of strategies to be used in the next
problem solver execution. All of the display objects are connected to their referent
problem objects, but do not interfere with t¥1em; thus, we can develop multiple
MICE interfaces.

CLOS Issues
In a search problem (as in movie production), performance is the Paramount issue.
Optimization of the various modules and overall problem solving framework has left

a considerable computational load on PCL. Althpugh increasing PCL performance
will only resultin a constant speed increase and is thus not theoretically interesting,
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realistic use of the system as a unitin some application demands high performance.
Thus, we would like to see performance issues stressed.

The metaob%'ect protocol is also of interest. We define classes of problems;
subclasses of problems inherit problem objects (constraints, variables, and domains).
Currently we must support this behavior through complex initialization procedures;
this might better be done by defining problem meta-objects.

Certain aspects of the CLOS specification are found to be frustrating in practice. For
example, it is often useful to specialize on optional arguments; this might be
integrated into CLOS without violating the notion of congruent lambda lists.

Finally, as a programming effort MICE has often been frustrated by the lack of
environmental integration in PCL. Although we realize this issue is separate from
the actual CLOS specification, this workshop will be a useful forum for discussing the
kinds of tools CLOS programmers need to work effectively.

Appendices

1. Part of the MICE Class Graph

EXTENSIONALIZABLE-CONSTRAINT-MIXIN

TRACED-SS-MIXI
SOLUTION-SPEC <CH RONOLOGICAL-S
DEFAULT-SS

SEARCH-STATE
SOLUTION-STATISTICS

INTERVAL-DOMAIN
DOMAIN <INTENSIONAL-DOMAIN
EXTENSIONAL-OOMAIN

VAR

PROBLEM-OBJECT OEFAULT-SS-TRACED

MICE-OBJECT DISPLAYABLE-OBJECT

EXABLE-IN-CONSTRAINT
EQUALITY-CONSTRAINT

INTENSIONAL-CONSTRAINT
CONSTRAINT ==
EXTENSIONAL-CONSTRAINT

VC-EXTENSIONAL-CONSTRAINT-CELL
VC-CONSTRAINT-CELL<
VG INTENSIONAL-CONSTRAINT-CELL

VC-VAR-CELL

VC-CELL
VC-OBJECT VC-INTERVAL-DOMAIN-CELL
vC-OOMA!N-CELL<VC-INTENSIONAL-DOMAIMCELL
vC

DISPLAY-OBJECT

VC-EXTENSIONAL-DOMAIN-CELL

2. A snapshot of the MICE interface

a. The solution specification menu
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CLOS Position Paper for Digital Equipment Corp.

Meta-Objects for Efficiency

As a Common Lisp vendor, we have an interest in insuring that Common Lisp be as
time- and space-efficient as possible. Although CLOS Chapters 1 & 2 have already
been adopted by X3J13, we are keenlr‘ interested in tﬁe development of the
remaining chapter(s), and making sure that efficiency goals are not inadvertently
subverted. In particular, we would like to explore how the richness which CLOS
provides for development can be subsequently restrained (presumably via the
meta-object protocol) for the purpose of delivering a debugged application which is

as small and fast as possible.

Implementation Issues

More pragmatically, we are interested in examining CLOS implementation issues,
especially as they relate to efficiency of application code. We would be interested in
a discussion of the (obviously significant) engineering behind PCL. We are also
concerned about bootstrapping issues, which make having delivered systems more
complex than perhaps is necessary.

PCL Status
A status report on PCL would be a welcome topic, as would any discussion of future
plans and (even tentative) schedules.

Debugging Tools

Providing good debuggin? tools in an environment is an important issue. We would
like to learn about ways of displaying (graphically or otherwise) the interesting parts
of the computation, including how various applicable methods have been run or are
about to run, or how particular methods weren’t run. Also providing graphical ways
of manipulating classes should not preciude any significant functionality available
programmatically, and should offer the ability to translate to and from source code.

Concurrency

We would also like to see CLOS address issues of concurrency in a reasonable fashion.
Although, strictly speaking, concurrency issues exist onlz outside the universe of
Common Lisp, and hence CLOS, discourse, the use of multiprocessing systems
supporting either shared memory or network communications has become common,
and concurrency support in an object-oriented system will be one of the keys to
acceptable applications performance. This support might range from that which
provides for object-internal concurrency with appropriate synchronization and
notification primitives, to that which merely provides for object-external
concurrency by requiring a true message-passing method invocation interface.
Consideration must be given to whether these objects are viewed as "active” or
"passive" in their relationship to threads - whether an object encapsulates (always) a
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thread which executes all methods of the object, or whether any thread can invoke
methods of any object and execute them in its own context (on its own stack).

Persistence

Coming in the near future is the need for persistent data in the object-oriented
environment. And persistence may have a significant impact on the concurrency
support offered, with the need to support multiple-object transactions of both
long-term and short-term duration.

Integration with Other Systems

Although CLOS represents a new standard for object-oriented systéms, we are
interested in issues surrounding the integration and interaction of CLOS with other,
pre-existing, object-oriented systems. Especially of interest to us are CLOS interfaces
to various graphics and windowing systems, including X, CommonWindows, and
others. Also, we would like to hear about any work that has been done to try to
integrate CLOS with other object-oriented languages or language extensions, such
as C++. Just as many vendors provide access to other programming languages
from Lisp, we anticipate a demand for interfaces between CLOS and other
object-oriented languages.
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TICLOS: A high performance implementation of CLOS for the
Explorer family

Patrick H. Dussud
September 9, 1988

1 Goals

The following goals were set at the beginning of the design:
e Provide a complete implementation of CLOS, as defined in X3J13.

o Provide a commercial high performance implementation of CLOS. A measure of success will be that a
piece of code converted from Flavors to CLOS runs at least as fast as it ran under Flavors.

e Provide low level data reprentation compatible with Flavors. This avoids modification of the memory
management system software, and vatious other related utilities.

e Provide high level compatibility wtih Flavors. At least, Flavors should be some sort of CLOS classes and
it is possible to specialize a CLOS method on a Flavor class.

2 Design Philosophy

Given the above goals, the design CLOS was based on our experience with the Flavors system. The design
gave priority to Flavor like operations:

e Fast runtime execution, at the expense of method and class creation, or modification, by precomputing
all the information that will be needed at runtime.

o Fast single argument method discrimination. Multi method and individual methods discriminations are
done in muitiple steps of the basic mechanism.

o Fast instance access, at the expense of more data structure overhead.

Another design goal was to limit the amount of special support in microcode to a minimum: The system
should be implemented in Lisp, and not in microcode, unless there is a benefit to get {rom the hardware. The
amount of special support is significantly lower that the one devoted to Flavors. The advantage to this design

philosophy is that it provides us with a solid starting point: We can get performace statistics {from Flavors;
The simulation of the design can be tested on data gotten from real program measurements.
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3 TICLOS implementation

3.1 Representation of instance and classes
3.1.1

Standard-class objects are split in two parts. The class object points to a class-description structure that
contains the information accessed through the standard chapter 3 accessors. This allows for Class redefinition.

3.1.2

Instances have a header word, containing a tag and a pointer to their class descriptions. After the header
word, comes all of the instance slots. This is very similar to Flavors, where the class-description structure is
called Flavor structure. This enables us to run without modification to the garbage collector system. TICLOS

instances are distinguished from Flavor instances by a bit set in the header word (most significant cdr code
bit).

3.2 Representation of generic functions

Generic functions are represented as a normal compiled function (FEF), a debug info slot points to the data-
structure containing their slots. This allows for fast generic function call with little support from the microcode.

3.3 Representation of Methods

Methods are represented as instances. One of their slots points to a compiled function(FEF) that implements
the methods.

3.4 Method discrimination

Method discrimination is done by calling the microcoded routine (miscop) %dispatch-method. This routine
accesses the generic function arguments, and uses the pointer field of the instance header (pointing to the
class description of the instance) of the most significant argument as a key to a dispatch hash table. The
value will either be an effective method to be called, or another hash table if other discriminations have to be
performed. When the effective method is called, the call is tail recursive: The call frame of the generic function
is updated, and re-used for the method call frame. This makes sense because the effective method receives the
same arguments that the generic function received. Benchmarks show that when a generic function is called,
and one argument discrimination is performed, TICLOS is faster than Flavors’ SEND.

3.5 Slot access within a method

The optimized instance access uses mapping table technique analog to Flavors. The implementation is extended
for the case of multiple instances access inside of a method: There is one mapping table passed for each
spectalizable argument. These mapping tables are passed directly by the call instruction to the methods, via
specialized locals. This avoids rearranging the stack to accomodate for more arguments than the one originally
passed to the generic function. The mapping table mechanism has been extended to handle access to class
slots, and dynamic class redefinition. The mapping table stored values can be one of:

e A fixnum, when the slot is an instance slot. It codes the position of the slot in the instance.
» A locative, when the slot is a class slot. It points to the class slot location, inside the class-slot structure.

e Some symbolic values, to code the situations, where an instance is obsolete, or when a slot does not exist
anymore.
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The microcode following mapping table inditections uses the Explorer specialized hardware to branch through
these cases without cost.

4 Conclusion

TICLOS implementation, on the Explorer architecture led to a system, that outperforms Flavors, and increases
the functionality of object oriented programming significantly. Even though it supports the most sophisticated
features of CLOS, (instance update after class redefinition, and multi-methods), careful design led to a no
performance penalty for the common case. We anticipate a change in programming style due to the powerful
new features of CLOS (multi methods, and individual methods, metaclass programming). This will lead to
some additional tuning of TICLOS, as performance data is available.

References
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John Dye
IU Lab Director
Advanced Decision Systems

This letter is my submission of a position paper for attendance of the Clos Workshop
at Xerox this coming October 3-4, 1988. At the workshop | will represent Advanced
Decision Systems whose research projects make extensive use of CLOS. In my
position as Director of the Image Understanding Laboratory (IU Lab), | use and
support two large software systems (Sharkl! and View) which are built upon the
CLOS object-oriented language standard. My purpose for attending the CLOS
workshop is twofold: 1) to provide the perspective of an application author with
experience in using CLOS to implement large systems and 2) to engage in discussion
about the suitability of CLOS for developing large time-critical applications in LISP.

My perspective as an applications author stems from over a year of experience using
the PCL software in implementing two large systems: Sharkll and View. Sharkll is a
User-Interface toolkit written in CLOS and COMMON-LISP for the Sun Workstation
which was demonstrated at AAAI-88 at the Lucid booth. Sharkll is built on the NeWS
windowing system from Sun and provides an object-oriented interface to lisp
programmers using NeWS. In addition to the standard user-interface objects, Sharkil
provides several high-level support packages including Image display, Chart
Drawing, Table Interactions and Graph Interactions. View is ADS's representation
language for describing spatial objects and processing over them. Written in Clos,
View makes extensive use of inheritence and method combination. View provides
macro constructs for rapid access and iteration over these spatial objects. In
addition, View provides an object-oriented database capability to relate the objects
with each other. View also provides the ability to display the Spatial objects using
the Shark user-interface constructs. As part of attending the workshop | would be
pleased to demonstrate the Sharkll user-interface running on the'Sun4/110x. Sharkli
requires about 25 megabytes of disk space for the software (which includes one
10megabyte lisp image). In addition Sharklil requires the Sun NeWsS version 1.1
software be installed. Sharkll also requires at least 50 megabytes of swap space be
available to bothleWS and Lisp.

e
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My experience with CLOS on both the View and Sharkll efforts has led me to a belief
that the CLOS implementation must be very efficient if it is to be used for
user-interface and image understanding applications. | believe that CLOS must be
efficient in the instantiation of objects and in doing method combination for it to be
widely accepted. Often applications like computer vision or user-interface require
thousands of objects to be created at once (e.g. when doing an edge-extraction or
when displaying a large Table). The time and space used by CLOS in making large
numbers of object instances is crucial to the performance of these applications and
to the acceptance of CLOS by programmers who work in these areas. | am also
interested in tequiniques to model the amount of performance penalty of usin
CLOS methods over Common-Lisp defuns. Itis important that this penalty be a sma?l
fraction of the time spent in function execution and that this penalty grow
sub-linearly with the number of objects defined in CLOS.

| believe that the real-world experience I've had with CLOS will provide a useful
Eerspective at the workshop. In addition, | am excited about the possibility of
ecoming more informed about the theoretical aspects of CLOS, particular
Meta-Objects.
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Database Support for Object Oriented Programming

Steve Ford

Information Technologies Laboratory
Texas Instruments Incorporated
P.0.Box 655474, M/S 238
Dallas, Texas 75265
(214) 995-0362
ford@csc.ti.com

ABSTRACT

Zeitgeist is an Object-Oriented Database (OODB) System being built by the
Information Technologies Laboratory of Texas Instruments in support of
programming environments. In addition to providing the traditional benefits of
database support, stable long-term storage and controlled sharing of information,
Zeitgeist is integrated into the programming environment which utilizes it. Our
premise is that the data structures and data manipulation primitives provided by
computer programming languages afford the most natural interface to data
regardless of the location of that data (i.e. local memory or remote database), and
that database data models and their associated specialized query or data
manipulation languages tend to be more an artifact of the design of databases than
a natural interface to them. The single deficiency of most programming languages
in assuming the role of database languages is their lack of a provision for dealing
with the temporal dimension. Rather than to invent yet another language, we have
chosen to extend popular programming languages in this direction, starting with
Common Lisp. Our current implementation permits a programmer to designate an
normal transient Common Lisp data object or Flavor object as database resident. A?I’
subsequent references to that object, the objects it references, or future versions of
them, will be transparently redirected to the database. The programmer continues
to manipulate the object as if it was resident in virtual memory. This seamlessness
between transient and persistent data has trivialized the conversion of several
applications from virtual memory implementations to database implementations.

Experience has shown that the persistent object of choice is the Flavor object. The
advantages of the association of a data structure with the operations that
manipulate it is only magnified when that object, its definition, and its methods
actually live outside of virtual memory, and are shared among users on different
machines. In Zeitgeist, no explicit action is required to maintain that association in
the database. The biggest disadvantages of Flavors is its relative lack of portability
and extlensibility, problems addressed by the CLOS standard and its Metaobject
Protocol.

Shortly, we will be adding CLOS support to Zeitgeist, and porting our system to UNIX
platforms. We are interested in the general experiences of others who have
extended CLOS, and, more specifically, in a number of persistence and temporal
language issues that have arisen from our integration of an OODB with a
programming language.
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For instance, Common Lisp semantics don’t allow two symbols with the same name
to exist concurrently. How do we reconcile semantically the ability to manipulate
two versions of a sc}/mbol simultaneously in memory? The same issues apply to

packages, structure definitions, and CLOS class definitions.

Also, CLOS requires that changes to a class be Propagated to its instances. Does this
requirement disallow the simultaneous manipulation in memory of different
versions of an instance created with different versions of a class?

We make use of the low-level invisible pointers and trap handlers common to most
Lisp implementations to identify persistent objects an slots, and to transparently
fault in data from the database, Would it be desirable to formally define these
widely-used mechanisms, and add them as language features?

Our implementation defines an external data representation and the associated
translation and data compression routines for Common Lisp, as do other similar
implementations. Is it appropriate to converge on a common interchange format
for the language? :

We look forward to more discussion of these issues. For more information on

Zeitgeist, a detailed report on this project appears in the Proceedings of the Second
International Workshop on Object-Oriented Database Systems.
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Position Paper for Franz inc
PCL workshop.

We are currently using PCL for writing window-based debugging tools which inciude
an inspector, process browser, stack browser, parameter browser, profiler and
grapher.  Our goal is to not only provide these tools but write them in a way that
they can be modified and extended by users. We've been very pleased with the ease
at which code can be developed and debugged with PCL. ~ Naturally we are also
working on reducing the overhead for generic function calls. Our efforts are
currently machine (and Allegro Common Lisp) specific.

For the future we see ourselves working in three directions: One is to provide more
tools written in PCL. Second is to continue to improve the speed of generic functions
calls and instance variable references. Third is to turn inward and rewrite parts of
the Lisp system in PCL so they can be easily extended by users.

The following issues concern us as developers of products in PCL and as people
supporting customers of our Lisp who use PCL:

What is the timetable for PCL development? .

When will machine independent speedups (e.g. method lookup) be added to PCL (if
they will be added at all)? ,

What other changes are anticipated?

How long will PCL work be done at Xerox and freely given out? Will the Xerox
lawyers decide that they have something valuable on their hands and start chargin
a license fee for the code? If they have no current plans to charge such a fee wiﬂ
they make a written statement they will never charge such a fee?

The fact that there is one official set of sources for PCL has made PCL code very
ﬁortable across implementations. It is frightening to think of what would have

appened if various Lisp implementors were just given the CLOS spec and told to
implement that. No document can be as unambiguous as the sources themselves.
In the future as PCL is imbedded in various systems people are going to be forced to
diverge from the official source and it is important that the management of the
sources permit implementations to diverge in different and substantial ways.

We would like there to be some way to separate the parts of PCL just needed for the
execution of PCL methods from the parts needed to define new classes and methods.

Are there plans for a test suite for CLOS?
For our system we would like to be able to define everything in the PCL syntax and

then easily trade speed for extensibility by declaring that certain parts of the class
hierarchy are frozen.

The people at Franz who are involved in teaching Lisp have the following
observations to make. :
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Until very recently object oriented programming was very closely associated with
Smalitalk, Lisp, and for those who knew about it, Simula. The fact that these
languages were themselves considered somewhat exotic and not readily available to
most programmers added to the mystique which surrounded object oriented
programming.

The recent interest in oops in the popular computer press, the use of oops in data
base technology, and the development of C+ + have increased programmer
understanding of what the term means. For some, it has provided the opportunity
to use object oriented programming within a familiar programming framework.

In addition, numerous tutorials on Object Oriented Programming are now
advertised. While | have no data on the response to these ads, it is clear that training
of this sort is available to those who want it. -

In consequence of these developments, the task of training, and to a lesser extent
documentation, of CLOS can concentrate more on the features of CLOS rather than
providing the explanation and experience necessary to deal with the basic ideas of
oops.

Furthermore, because many of the magazine articles and tutorials concentrate on
applications with which a non-Lisp programmer may be familiar, the task of a CLOS
instructor includes showing how CLOS is really an extension of ideas and techniques
which are prominent in other aspects of Common Lisp.

The increased sophistication of the general programming public with respect to
object oriented programming also demands that people teaching CLOS be much
more knowledgeable than were their predecessors who taught other object
oriented programming systems which were extensions to Lisp. In the past, anyone
with access to an implementation of object oriented programming, and its
documentation, could very easily be more knowledgeable than very sophisticated
programmers who had no access to these tools.
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Some Remarks on the Common Lisp Object System

Richard P. Gabriel

Lucid, Inc. and Stanford University

In other forums [ have argued that programming language standardization freezes
advancement and research on the standardized language, if for no other reason than the
fact that funding for research on a standardized language is hard to get. The more advanced
and fertile the language the more the pity when it is standardized. Moreover, standardizing
a language whose design is significantly beyond that of currently used languages is risky if

the benefits of experience have not been folded back into the language.

The Common Lisp Object System represents a relatively large departure from known
languages to be incorporated so quickly into a language standard. The Object System uses
method applicability instead of method inheritance, which is a radical departure
from the mainstream of object-oriented programming languages. With method inheri-
tance a method attached to a class is inherited by subclasses of the class: Messages sent
to instances of these subclasses are handled by those inherited methods. With method
applicability the classes of arguments supplied to a generic function determine which
methods apply and are invoked. The Object System is derived by a major design effort

from New Flavors and CommonLoops.

There has been virtually no experience with the Object System because there has only
recently been available a real implementation of the Object System. All experience with
CLOS-like systems has been with New Flavors and CommonLoops, which are not only
different from the Object System but do not have metaobject systems like that which will

most likely appear in the Object System.

[ think, though, that the Object Svstem represents one of the few advancements
in object-oriented languages in the last 10 vears. and CLOS-like languages should be at
the forefront of object-oriented research. unless my fears are correct about research on

standardized languages.

Here are what [ think are the major contributions of the Common Lisp Object System:
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1. Substitution of Method Applicability for Method Inheritance

Method inheritance works fine for unary operations, but when multiary operations on
instances are required. the model breaks down in that the programmer often has to be

concerned with the mechanism of multiple dispatches rather than with their interface.

People argue that method applicability is a generalizaiion of method inheritance in
that the “message” is the operation name, but this generalization gains only method
applicability on the first argument. So-called multi-methods are a generalization based on

a paradigm shift.

One nice custoﬁizati<)n technique that works well with generic functions is for a system
to invoke multi-argument generic functions whenever certain important events or actions
take place. By extending the class hierarchy with important subclasses and by providing
methods on them, one is able to customize that system in an elegant way. The key
factors are the extensibility of the hierarchy and the ability to describe a complex event by
describing a combination of classes for the arguments. [ believe there are further techniques

based on this sort of model, but the key step has been taken by the Object System.

Delegation'is the other competing object-oriented model. In delegation, prototypes
are used instead of classes to implement shared behavior. The claimed benefits are that
delegation and prototypes model how people learn and conceive of categories, that default
values are handled more naturally, that some problems regarding the magic SmallTalk
variable named Self are cleared up, and that interactive, incremental software development
is easy. The first and last of these are simply claims whose validity is possibly more
amenabie to psychological and sociological methodologies than to reasoning. The problems

with default values and Self seem to be the subject of low level language design.

Delegation seems to be weaker (but not in the formal sense) than the Object System
because it mixes together different levels or areas of concern. With an inheritance system.
the author of a particular piece of code or method can leave it up to the designers of the
hierarchy and its other associated methods to best place methods in such places that other
methods that need to delegate work can find them without knowing their names. That
is, in message-passing and method-applicability systems there are means for invoking less
specific inherited or applicable methods to complete the action. With delegation one can
do this, but the author of the method needs to be aware of either the identity of the method
ot object to which responsibility is delegated, or the name of place where that identity is

stored. This latter constraint is only a problem when there is a need to erect and maintain
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very strict abstraction boundaries.

2. Inheritance from More than One Domain

Some people call this “multiple inheritance,” but I think that that phrase carries too
much baggage, at least in the form of ohjections based on a particular view or implemen-
tation of multiple inheritance. [t seems plain that the behavior of objects should not be
limited to those things inherited from one family chain: Some portions of a program may
deal with an object using operations appropriate to what it represents to the user while
other portions will use operations appropriate to how it is represented or how it is displayed
on the screen. These two views cannot be reasonably captured by a single family chain;
therefore the combination of chains is required. Multiple inheritance is a technique by
which a class is created that represents a point in the combined family trees: Objects that
have the combined behavior are instance of that class. Once the choice is made to inherit
characteristics from several family chains, there are various decisions one can make about
the behavior of the object when multiple ancestors supply same-named properties (slots
and methods, for example). We will call such potential confusions collisions. One choice
is to shadow, another is to signal an error, a third is to combine, and a fourth is to provide

mechanisms for programs to selectively use one or the other of the possible properties.

The Common Lisp Object System does not treat all collisions uniformly. With meth-
ods, combination is used: with slots, inheritance, shadowing, and combination are used.
In order to implement shadowing, a class precedence list is computed and single inheri-
tance shadowing is used on this constructed family chain. A class precedence list is a total
ordering of the classes with respect to a given class. This is not a very elegant solution, [

think, but it is workable.

3. Method Combination for Method Collisions

Method combination is one of the most interesting concepts in rhe Object System.
Had [ total control over the design of the Object Svstem [ would have adopted some form
of combination in all property collision situations. For example. [ would have introduced
the idea of domain or family into the language and provided a means for instances to be
instances of more than one class simultaneously without having to provide a class to repre-
sent the combined object as a combined object. [ call this multiple, single inheritance.
With it one can do a plausible job of implementing a facility to view an object as an
instance of some particular class, which is useful in database applications. A method then

must specify the domains as well as the classes of its arguments. To completely solve all
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inconveniences this approach introduces requires a more elaborate use of combination for

methods in generic functions, but that is a topic for research and beyond these remarks.

Method combination is, as | say, one of the more interesting concepts in the Object
System, and it has no close relatives in other languages. The idea that’s interesting is
that the effective method is not one that the programmer directly programmed, but one
which is produced by composing code at runtime. The method combination language in
the Object System is quite ugly. but it is one of the first serious attempts to do non-trivial
program composition—I[ regard function composition using closures as trivial. [ feel that
such program composition is one of the two or three new computational models on the

horizon.

4. First-class Treatment of Al Aspects of the Language

[ think the Object System doesn’t go as far as it could in. making everything first-
class, but it goes a lot further than most any other object-oriented language. SmallTalk
and C*~ are examples of disappointing languages in this respect, though SmallTalk s quite
advanced over C*~. The metaobject protocol is possible because of this first-classness and
is itself a major contribution. [ think that the Object System does not have a rich enough
structure to support the metaobject protocol in the manner it deserves, but it is quite

good.

Oaklisp is probably the pinnacle of first-classness, though in its dumb way HvperTalk

does pretty well. at least in exposing that which is normally hidden.

5. Initialization

[nitialization. redefinition, and changing the class of an object are places where the
Object System has moved ahead of vther languages. hut other weaknesses of the Object
System have rendered these aspects unpleasant. The problem is that sume arguments 1sed
for initialization fll slots and others supply kevword arguments to methods. This problem
surfaces in two places: one is the interaction of these two roles for initialization arguments
with the complexity of lambda-lists: the other is that the characreristics of the lambda-list
that make-instance inherits come from various places in class-defining forms and from

methods.

Both generic functions and methods use Common Lisp lambda-lists, which requires a
complicated set of rules to determine argument defaulting and to define when the lambda-

list of a generic function and the lambda-list of one of its methods are congriient. This

t
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choice was made because some of the designers believed that method definitions should

look almost exactly like function definitions. An initialization argument that is intended
for some method or methods must make its way through a morass of complex lambda-list
mechanism to get to the code that will use it. Had the interface between a generic function
and its methods been made cleaner, not only would confusing syntax heen eliminated but

the entire initialization protocol could have been simplified.

The key idea of generic functions that [ think can be pushed further is that a generic
function is an interface to a very interesting piece of code—the combined methods. As
an interface, generic functions could be made quite a bit richer, raised to a much higher
level (certainly to a level that sits above a number of different implementation languages
and their runtime systems), and possibly less focused on the performance required for
functions that are called in inner loops. Such a model of generic functions would be useful

in a parallel setting.

8. Conclusions

In short, the Common Lisp Object System sits well above the plain of ordinary object-
oriented programming languages, and, if work continues in CLOS-like languages, it will be

the wellspring of the interesting future object-oriented system research.
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A Position Paper for the CLOS Workshop.
John Gateley, Texas Instruments.

Texas Instruments is currently researching programming languages and real time
systems using Common Lisp. Optimization techniques for CLOS will be of importance
in this project. Tl will also be investigating the possibilities of using CLOS in a real
time system. This will require determining, for example, whether any CLOS features
require unbounded execution time, since these features could not be used in a hard
real time system. A related issue is whether any features of CLOS compile efficiently
on a lisp machine style architecture, but not on more standard hardware.

| feel this workshop is a great opportunity for me to learn more about CLOS and
object oriented systems. In addition to the particular items above, | am also
interested in more fundamental concepts, such as object oriented programming
paradigms. My background is programming language design, and so | am also
curious about design decisions made in the design process.
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METHOD DELEGATION IN THE

FORMS INTERFACE CONSTRUCTION KIT
Neil Goldman

UsSQ\Information Sciences Institute

INTRODUCTION

The Forms Interface Construction Kit is intended to provide a body of software for
building user interfaces to application programs coded in Common Lisp. In
garticular, the Forms Kit is concerned with interfaces built on a hardware base with a
itmap display with mouse and keyboard input devices, for applications running in
an environment with a hierarchical window system. Support is provided both for
the > >presentation< < of information in windows and for user and program
> >interaction < < with the data through the input devices.
In designing the Forms Kit two goals were paramount:

- > >Portability< < -- The Common Lisp language specification does not provide
constructs necessag/ for defining user interfaces. Forms Kit reduces portability
problems by providing a relatively small "virtual workstation” which must be
implemented for each Common Lisp environment. A wide variety of interfaces
can then be implemented by composing the facilities of Common Lisp and this
virtual workstation.

- >>Specification Oriented Definition< < -- The Forms Kit provides a
compromise between constructing an interface by selecting from an interface
library and programming an interface in terms of window system primitives. In
essence, the Forms Kit provides a high level language for composing and modifying
interface specifications. In contrast with interface toolkits in which interfaces are
defined by example, Forms Kit provides the programmer with a full programming
language for interface definition.

BASIC CONCEPTS

Forms Kit interfaces are built upon a hierarchical window system with
rectangular windows. A form window may > >immediately contain<< one or
more > >instantiated form< <s within it. Every instantiated form is eithera
> > hierarchy leaf < < or is hierarchically decomposed into other forms.

Each form has a single > >viewport< <. A viewport is an abstraction that serves
two purposes. First, it provides the mapping between a form and the subregion of
its window allocated for displaying its data. Second, since displaying the full form
may require more space than is allocated to it, the viewport defines what subregion
of the full form should be displayed at any given time. The ability to adjust the
portion of a form that is visible is called > >scrollability< <.

The viewports for a window's top-level forms must occupy non-overlapping
rectangular subregions of the window. The vieport of a form may be no larger than
its parent’s viewport, reduced by borders and margins. Sibling viewports may not
overlap. Any non-leaf form appears as a tiled collection of subforms, surrounded by
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border and margin. The scroll offsets determine which subforms are visible within a
collection.

One of the major benefits provided by Forms Kit is the determination of actual
viewport sizes and positions from abstract specifications in terms of features such as
>>ftilling< <, >>spacing< <, and > >justifying< <, and > >aligning< <.

OBJECT ORIENTED PROGRAMMING AND FORM DEFINITION

Form definition plays the same role in interface specification that
proceduralabstraction plays in programming. Naming an interface specification
makes iteasy to reuse. It also make recursive specifications possible. Parameterizing
these named specifications makes them far more useful. The parameters must
encompass not only the data to be displayed, but aspects of the presentation and
user interaction as well.

Many people have observed that user interface specification (both appearanceand
interaction) benefits greatly from an additional kind of abstraction provided b
object oriented programming, which permits modular specificationsto be combinezz
aug?(mented, and even modified to form new specifications without the need to
make lexical copies of the component pieces. CLOS has been adopted as the
substrate for the Forms Kit to provide this kind of modularity.

In Forms Kit, form classes are implemented as standard classes. Instantiated forms
are implemented as standard instances. Most generic functions are composed of
methods that discriminate based on only one operand (although the generic
functions often have other operands). The discriminated operand is always an
instantiated form, and, by convention, it is always made the first operand of the
function. Forms Kit contains macros which simplify writing code that conforms to
this convention. These functions are called > >form generic functions< <.

STRUCTURAL INHERITANCE

In building interfaces with Forms Kit, we have encountered numerous cases in
which a form of “inheritance" ~was desirable based not (solely) on class
specialization, but on the hierarchical structure of our forms. In particular:

- Certain aspects of appearance, such as FONT and TEXTURE, should be
specifiable for entire collections of forms and inherited through the
parentage hierarchy. Most forms do not have their own specification
for FONT, but use the font specified for their structural parent.

- In some cases, it is easier to specify the behavior of forms in
resr)onse to user gestures (e.g., mouse clicks) centrally for a
collection of forms, rather than distributed across the members of
the collection.

- Sometimes a piece of application data need only be stored once, in a
slot of a collection, rather than copied to every component that
needs it. The components should not be aware of where in the
structural hierarchy the data actually resides -- they should simply
access the data with a generic function that "inherits" it from
whatever structural ancestor holds it.
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IMPLEMENTATION

Forms Kit provides a second form of inheritance, > >structural inheritance< <,
that is specific to the hierarchical nature of its forms. Any form generic function
can be declared, via a simple macro, to be a >>propogating generic
function< <:

DECLARE-PROPOGATING [function-name {args} . {body}]

In essence, the macro simply provides a method for <function-name> specialized
to MINIMAL-FORM, which is the most general class of instantiable form. The
method simpli(I reinvokes the generic function on the form parent of the form on
which the method was invoked, passing the remaining arguments unchanged.
<args> and <body> come into play only if the calls propogate through a root
form (one with no structural parent). In that case, they determine the behavior,
the default being to signal a "no applicable method" error.

A DECLARE-PROPOGATING-SETF macro is provided to create propogating SETF
functions.

DISCUSSION

It seems that the concept of an object designatinga > >delegate< < for itself for
certain generic functions would have fairly broad utility, and generalizes suitably to
functions that are generic in more than a single operand. The implementation
described above hides the concept of delegation from the method/slot lookup
components of the object system. The execution cost is pays for this seems fairly
large -- an extra method invocation, with all operands

passed, for every layer of delegation. Do the proposed CLOS "meta" protocols
provide a more efficient mechanism? What declarations could be made to enhance
performance of method/slot lookup for delegating methods? Does the CLOS meta
object proposal include portable means for extending the language of
declarations?

The DECLARE-PROPOGATING macro completely fails to handle one important
aspect of method delegation. In some cases, such as centralized control of user
interface gestures, we find the the method which ultimately handles the call needs
to know for which form its form operand is acting as delegate. In our
implementation, this is handled by adding an additional parameter to the

eneric function. Originating calls always supply the same form argument in two
orm positions; the second occurrence is simply passed along unchanged as control
is delegated up the form hierarchy.

In all our uses of propogating generic functions, we have wanted class
inheritance to take priority over structure inheritance. We do, however, have a case
in which we need a form of method composition that combined information
comr;‘)uctied from class-inherited methods with information from structure-inherited
methods. ‘

Our experience shows that often, but by no means always, an entire class choose to
delegate in a uniform way.
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Finally, we note that the DECLARE-PROPOGATING macro discussed above could be
implemented in PCL, it apparently could not be done with the advertised CLOS
interface. The reason is related to the overly-stringent, in our opinion,
congruence requirement for lambda lists of methods of a generic function. Our
macro-defined methods receive and pass the parameters that are not being
changed with an &rest arg, although some of them are reguired arameters. This

would not be permitted in CLOS, nor is there any advertised way for the macro to
determine . generic function’s "congruence signature"” so that it could compute
an appropriate lambda list.
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Hiroshi Hayata
Fuji Xerox Co. Ltd.
System Technology Center

| have few experience writing CLOS code. | am interesting in application parts which
is written in CLOS.

XAIE have many and various apglication parts, FDEV mechanisum, Programmer
Assistant mechanisum, DWIM mechanisum, Windows, Tedit, Sketch, Grapher and so
on, but they don’t have independency as application parts. These parts run only on
XAIE. So application users must use whole XAIE system to built application program
with these parts. | think that these parts should be written in CLOS to get generic
application parts.

| think that there are 2 ways to write these application parts. The first way is that
specifaction of application parts are decided, class strucure is designed, and try to
implement. The second way is that existing lisp program is used. Existing lisp prgram
is incrementally rewritten in CLOS. The first way will takes long time, but can get
well structured parts. The second way will not take so long time, but can not get well
structured parts. Especially, | am not so familiar with CLOS. The second way seem to
attractive to bignners of CLOS.

| want to discuss about techniques for converting to CLOS and programming
methodology of CLOS.
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IBUKI
Position Paper for CLOS Workshop

IBUKI is the vendor of IBUKI Common Lisp (IBCL). IBUK! has a major commitment to
support CLOS as the objects system standard for Common Lisp. IBUKI's primary
interest in attending the CLOS workshop is in determining what kinds of
modifications to the kernel of IBCL will best optimize CLOS performance. I1BUKI is
committed to supporting such kernel changes so long as they are consistent with
IBUKI's general commitment to providing small, efficient, and portable Common
Lisp environments.



A Paper for AAAI CLOS workshop, prepared at 88.09.09, to be presented at '88.10.03 or 04

Masayuki Ida
CSRLISRC
Aoyama Gakuin University
Shibuya, Tokyo JAPAN 150
ida%cc.aoyama@relay.cs.net

A-DISPATCH Algorithm for CLOS Method Look Up
and its Application to CAM-based Accelerator

1. What is A-Dispatch algorithm

A-Dispatch (Associative-Dispatch) alaorithm is an algorithm for CLOS method look
up, which is intended to be suitable tor our accelerator hardware pro- ject, but is
generally applicable. The evaluation of A-Dispatch is not fin- ished yet. Though the
early version of it was implemented on our prototype board, there are lots of rooms
to fix and improve. This paperis not a com- plete paper.

2. Basic Idea behind A-Dispatch

Associator like (key1, key2, ..., keyn, value) is the issue of this paper. The simplest
but not enough understanding is to store associators in CAM (content addressable
memory) and retrieve the value for (key1, key2, ... , keyn) with one-cycle
instruction. If the application is simple enough that the number of keys is fixed
completely and the equivalence matching is the only required retrieval, it is very
easy to implement. We are thinking about the acceleration of method look up
which is not sosimple. CLOS has a following characteristics to be considered for
method look up im- provement.

1) The number of arguments which play roles in method discrimination is fixed for
each generic function.

2) There is an inheritance which needs more than equivalence matching.
Furthermore, the inheritance is not a single one but a multiple.

3) There is a dynamic behavior of determination. We cannot statically fix the
relation among methods, and among classes.

4) The order in a class precedence list of each class is fixed at least just before the
evaluation of it.

5) CLOS has a multi-method feature.
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3. Key is class precedence resolution

If CLOS has a single inheritance nature, the situation is better for class relation
determination. Class relation can be linearized and we can be easy to provide a
mechanism to determine the relation among classes. Since CLOS has a multiple
inheritance feature, relations among classes depend on the specification written in
each classes. We need a class precedence list logically to trace super classes of a
class. And this trace should be done each time we need the relation.

ANSI 88-002R Page 1-20 contains an interesting case;
(defclass pie (apple cinnamon) ()
(defclass pastry (cinnamon apple) ())
(defclass apple ()())
(defclass cinnamon ()())

The class precedence list for pie is (pie apple cinnamon standard-object t). For pastry
is (pastry cinnamon apple standard-object t). Though it is not possible to build a new
class that has both pie and pastry as superclasses, the above pie and pastry
definitions have no problem.

Sucfpose we have the following defmethods.
(defmethod foo ((x apple)) ...) ...... method1
(defmethod foo ((x cinnamon)) ...) .... method2

When (foo pie-instance) is executed, method1 must be dispatched. When (foo
pastry-instance) is executed, method2 must be dispatched.

4. CAM structure.

We assume we have a CAM circuitry with the following specification.
enough bit length in word to hold several keys and a value.
enough number of words to hold associators.
fast interface between CPU and the CAM.

We assume the CAM has following operation menu.
multiple field masking for keys
multiple candidate detection
complete matching
arithmetic detection
GC-free store

The current technology of CAM satisfies most. (but not complete yet)

5. A-Dispatch algorithm

5.1. Assumption:

Associators for MCE (Method Cache Entry) and CPE (Class Precedence Entry) are
pre-stored all. It is possible to modify/delete an existing associator and to create a
new associator.
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MCE = (generic-function-object attribute class-arg1 ... class-argN body)
N should be fixed for an implementation, say N=5,
(generic-function which has more than N arguments is out of scope)

CPE = (class attribute super-class1 ... super-classM)
M should be fixed for an implementation, say M =6.
(If a class has more than M super-classes, it is possible to
expand using multiple candidate detection feature)

5.2. Algorithm: .
This algorithm starts upon the final phase of invocation, that is, all the arguments
are evaluated, and the generic function object is detected.

1) for each argument of call, get the class of it. Retrieve CPE and register ((The-class
0)(super-class1 1)(super-class2 2) ..) to the simple cache in the CAM board.

2) retrieve MCE and get the body.

A case for (foo pie-instance):
1) ((pie O)(apple 1)(cinnamon 2)) is registered to the simple cache.
2) Since CAM contains (foo attribute apple method1) and (foo attribute
cinnamon) are stored, (foo pie) has no entry with direct equivalence.
2-1) Retrieve MCE and get flags indicating there are several candidates.
2-2) Read out all the candidate associators.
2-3) Translate class-of-arg to the index consulting the simple cache.
(foo attribute 1 method1) and (foo attribute 2 method2) are made.
2-4) Arithmetic compare to choose the one which has lease value.
(foo 0) find out (foo attribute 1 method1) is the method we want.

A case for (foo pastry-instance):
1; ((pastry O)(cinnamon 1)(apple 2)) is registered.
2

2-1) Retrieve MCE
2-2) Read out all the candidate associators.
2-3) Translate class-of-arg to the index consulting the simple cache.
(foo attribute 2 method1) and (foo attribute 1 method?2) are made.
2-4) Arithmetic compare.
(foo 0) find out (foo attribute 1 method2) is the method we want.

Multi-method is treated with much the same manner except 2-3) is looped for all the
arguments. 2-4) needs only one time even arguments are multiple.

5.3. Performance Estimation:
N clocks for N arguments 1)
+ 1 clock forretrieve MCE 2-1)
+ X minor-clocks for 2-2).
+ Y clocks for translation 2-3). Y can be 1.
+ 1 clock for 2-4)

3+N+X
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If the clock of the board is 10Mhz, N=3, and X’ = 3 (major-)clock, then the total
time is estimated to (3+3+3) X 100ns = 900 ns. Itis important that there is no firm
evidence for the above performance data.

6. The early experiences of A-Dispatch

Since 1986 spring, we have been trying to make an experimental system. We made
an experimental system using a 68020 VME Un*x sV system. | designed and made
(ajn accelerator board with 8 NTT CAM chips. The chip we used has the following

ata; ‘

word organization: 128 X 32 bit (expandable to more bit width)

operation mode: 30

cycle time: 140 ns

chipsize: 10.3mm X 8.4mm

total elements: 71,300 '

Process: 3um CMOS metal double layered

power consumption: 250mW (5Mhz

pins: 53 (+ 9 for power)

manufacturer: NTT for experiment

(This chip is not showing the best technology NTT has.

their current chip is 512 X 40 bit (100 ns or less) with more

operation modes)

Since we designed 32 bit X 1Kw CAM array, classes and methods are stored by
sequential index and N is limited to 2. Maximum number of classes is 256.
Maximum number of generic functions is 1024. This board has two versions. One is
a hand-made prototype made during the design phase of Fall 1986 to March 1987.
The other is a wirelapped one with improved circuitry made dur-ing 1987. The cycle
time of the experimental board is set to 4 Mhz which is slow enough to trace. The
interface uses memory mapping technique. Now, we are in the third phase to
design more realistic implementation of A-Dispatch algorithm.
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CLOS Workshop Position Paper
September, 1988

Uses of CLOS in the Xerox
IntelligentInformation Access Project

We plan to develop userinterface and information access technology in
Common Lisp on a range of machines, including Mac I, Xerox Lisp
machines, Sun workstations, and Silicon Graphics IRIS workstations. We
would like to evolve a common framework for program development
for:

* window managerinteractions

* graphics: from 2D monochrome to 3D color animation

* network access

* database management, including a file- based B-tree package

¢ linguistic tools

Some of this software already exists (in Common Lisp, other dialects of
Lisp, and C) and some has not yet been started:; very little of the system
integration has been completed. We plan to convert everything not
already in Common Lisp to Common Lisp.

Much of the software we plan to build and integrate conforms readily to
an object-oriented structure. Our hope is that using CLOS as an
framework for all the pieces of our project will increase our productivity
and decrease the costs of building and maintaining our complex
software system. Our fearis that CLOS will extract a performance
penalty that we will not be able to tolerate (we are very sensitive to
ﬁerformance, particularly in the user interface to this system); we have

eard of people who have tried to use PCL but eventually abandoned it
because of performance problems.

We hope to achieve two things at the workshop. First, we would like to
find otﬁuer people with software needs similar to our own. For example,
ifsomeoneisbuildinga machine-independent window systeminterface,
we would like to collaborate with them. Second, we hope to find out
what plans are being made forincreasing reliability, stability and
performance of CLOS.

Sara Bly

Stu Card

Doug Cutting
Baldo Faieta

Kris Halvorsen
Austin Henderson
Herb Jellinek
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Walt Johnson

Jock Mackinlay
Jan Pedersen
George Robertson
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Vaughan Johnson
Mike Hewett

I am developing a new object-oriented version of the BB1 Blackboard Control system
in PCL. Knowledge in BB1 is represented in a semantic net, in a style partly similar to
Sowa’s Conceptual Graphs. We have a type hierarchy embedded in the net. Each
link between objects has a dual in the opposite direction. The primitive types of
objects we represent in the hierarchy are:

- generic objects (user-specializable),

- link types,

- knowledge sources,

- language features (including event, state, and action verbs;
modifiers; nouns; and sentences),

- roles,

- collections (various groupings, including contexts and
iraphs),

- knowledge bases, and '

- application systems ("skills" in our terminology).
Multiple skills can be loaded and can interact.

What's interesting from our work with respect to CLOS is the way the CLOS object
hierarchy fits/doesn’t fit the BB 1 semantic net representation. For example:

The closest conceptual mapping of the BB1 semantic net/type hierarchy to the CLOS
class hierarchy would have every BB1 object be a CLOS class. However, we need
Sﬁecific attributes for BB1 objects, so we'd need to use a single instance of each of
those classes, to get specific attributes as slots. The high overhead of defining classes
prohibits this approach, because BB1 applications often have several hundred
objects. The approach we have planned is to make certain special types of BB1
objects (specifically knowledge sources and their instances, link-types, skills, and
graphs) be instances of separate CLOS classes, and all other BB1 objects be instances
of a CLOS class for generic BB1 objects. Also, in BB1 we have three levels of
hierarchy-membership: class, individual (a.k.a. example), and instance. This
additional distinction, and the different semantics we have for class and instance,
make the BB1 type hierarchy/semantic-net to CLOS hierarchy a problematic fit.

We want to have arbitrary (naming, semantics, arity) links defined between objects.
The links themselves are not BB1 objects, but because we want to be able to reason
about types of relations, we want each CLOS link-class for our links to have a
corresponding BB1 link-type object in the type hierarchy. The CLOS link-class must
be related to the BB1 link-type so that, for instance, we can reason about the type of
a ?(iven link by finding out its CLOS class, and from that the position of the BB1
link-type in the type hierarchy. We often want to follow classes of links in searching
the semantic net, e.qg., the class of "is-a," "instantiates,” and "exemplifies" links -- all
definitional in the type hierarchy. Using the type hierarchy to define the classes is
important to reasoning in BB1, so it is important to be able to quickly determine the
BB1 link-type for a given link between BB1 objects, so we can use the position of the
link-type to determine membership in the search class.

We want the trigger and precondition checks, and the actions, of BB1 Knowledge
Sources to be methods, but also be easy to extract and edit, some even at run time.

34



We want to be able to save knowledge bases as modules, even if there are links
between BB1 objects in different knowledge bases. Then, when loading these
knowledge base modules, we need links between objects in different knowledge
bases to be instantiated correctly.

I will bring some diagrams to the workshop, that show our CLOS classes and the way
they implement BB1 objects.

We are, of course, concerned with the performance of CLOS. Two of the big reasons
we embarked on an object-oriented implementation are reduced code size (through
code re-use) and increased efficiency (because BB1 objects are modeled well %y
objec(tj—oriented notions). It appears that PCL meets our needs quite well in this
regard.
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Position Paper for CLOS workshop October 3-4, 1988
By Jeremy Jones and Gary Byers of Coral Software

Coral is going to begin work on a native implementation of CLOS for Coral Common Lisp
(CCL) on the Macintosh (CCL is also known as Allegro Common Lisp for the Macintosh).
In addition we will be re-implementing our window system in terms of CLOS. This paper
describes some of the issues we expect to face and asks many of the questions that we will
need to answer in the course of our implementation.

Coral Common Lisp currently takes up less than 800k on disk including our window
system, editor, and all of our development tools, The current native object system is Object
Lisp which takes up 4-5k, We have found that PCL adds from 300k to 400k to the size of
our Common Lisp. Thus converting from Object Lisp to PCL represents a fifty percent
increase in the size of CCL! This fact alone necessitates a native implementation of CLOS.

In order to proceed with our native implementation we would first like to understand the
implementation of PCL. We would like an overview of PCL. What are the important data
structures that are used? Which functions are the heart of the system? What are the major
bottlenecks and sources of inefficiency? What things were tricky or difficult to implement
correctly? What takes up all of the space? What types of things would have been done
differently if portability was not a consideration? What are the time/space/safety tradeoffs?

The next consideration is how we make an orderly transition from PCL o a native
implementation without writing CLOS from scratch, Which parts of PCL should we keep
(if any) and which parts should be thrown away? Since PCL has its own code walker it
seems that we should get rid of the code walking in PCL and have it done by our compiler.
What is code walking used for besides implementing symbol-macrolet? Are there any
other cases of things which are likely to be redundant with internal system capabilities?
Bootstrapping is obviously a difficulty in PCL. What kinds of native support would be
needed to simplify or eliminate the bootstrapping procedure? What portions of PCL are
used only for bootstrapping and can thus be eliminated from a delivered product? Are these
portions currently reclaimed by a garbage collection?

How do make our CLOS implementation as small as possible? Assuming CLOS is
inherently big (it has a lot of functionality) can we layer it so that only a reasonably small
CLOS kernel needs to be included in our kernel and the rest can be optionally loaded in?
This is important since our minimum memory configuration is only one megabyte and not
all users will want to use CLOS. It seems fairly straight forward to implement the
commonly used functionality of standard-class but how much of the meta-object
protocol nceds to be there?

How do we compile down applications based on CLOS so that only the minimum set of
components of CLOS and only the necessary classes and methods will be included? This
is an important consideration since the biggest weak point of Lisp is delivery of
applications. There should be standard techniques for producing small stand-alone
applications written in Lisp and CLOS. What kinds of declarations and proclamations need
to be added? Could some classes be proclaimed as unused so that none of their methods
would be included in the final application? Should we add declarations to say that a class
or generic function is finished being developed and won't be specialized or redefined so
that the compiler can make assumptions about the run time? Is it possible to use the
garbage collector to remove classes and methods that are not used in an application? Is it
possible to use type declarations at compile time to determine which classes and methods
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need to be there at run time? What types of things need to be considered when designing a
system in CLOS that is intended to be compiled to an application?

Coral currently has a window system based on Object Lisp, we are redesigning our
window system to be based on CLOS. The first problem we are faced with is that many of
the unusual dynamic features of Object Lisp are used, such as adding and removing
instance variables on the fly, instantiating classes, or creating sub-instances. Once these
are cleaned up and put into a traditional class/instance format, a number of stylistic issues
still remain.

The easiest way to translate Object Lisp into CLOS is to turn all defobfuns into primary
methods and all usualsinto call-next-method. Is this an appropriate way to design
a programmer interface to a window system? What are the performance penalties of
call-next-method in relation to before and after methods? Is call-next-method
considered an advanced feature with before and after methods considered mare appropriate
for beginners or non-sophisticated users? We would like 1o base our window system on a
subset of CLOS so that all of CLOS need not be loaded in order to use our window
system. What subset should we use? Should close be turned into a generic function that
operates on both streams and windows, or should we use window : close or window~
close? Should set £ be used to set characteristics of windows that have graphic side-
cffects such as position and color?

Does anyone have any good ideas on CLOS browsers and debuggers?
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A Design for High Performance Dynamic Generic
Dispatch in the Common Lisp Object System

James Kempf
Sun Microsystems
2550 Garcia Ave.
Mountain View, CA, 94043
415-336-4601
jkempf@sun.com

Keywords: generic dispatch, method lookup, Common Lisp Object System,

CLOS, method invocation performance

Abstract

This paper examines an algorithm for generic dispatch which combines
open addressed hashing for direct method lookup with a ternary tree
for inherited method lookup. A classical optimization procedure is
used to determine an optimum size for a hash table containing direct
methods. A cost function is formed which weighs the number of probes
required to retrieve an item as a function of the table size against the
amount of memory needed for storing the table, and the cost function
is minimized with respect to the table size, yielding an optimum table
size. Similar procedures, though common throughout a number of en-
gineering disciplines, are rarely formally used in software engineering.
To speed inherited method lookup, a scheme for assigning classes uni-
que identifiers based on their class precedence lists is described, and
data from three inheritance hierarchies in the literature is presented
to support the claim that the encoding scheme is not impractical. Final-
ly, a ternary tree based algorithm for inherited method lookup is
described. A design for a method lookup algorithm is suggested which
uses a hash table when the number of inherited parameter specializer
combinations is small, and a ternary tree with a hash table cache when
the number of combinations is large.

Introduction

The design of the Common Lisp Object System (CLOS) [ANSI88] as part of the
ANSI X3J13 standardization of Common Lisp has provided Common Lisp with a

standardized object-oriented extension that is taylored for application programmers
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interested in developing portable application software. An important feature of

CLOS is generic functions. Generic functions are functions with a localized inter-
face and a distributed implementation [Moon86], in contrast to regular functions
which have a localized interface and a localized implementation. As in other ob-
ject-oriented languages, user-defined methods provide the implementations for
generic functions, but, unlike other object-oriented languages, methods in CLOS
can be defined to use any number of parameters for generic dispatch. Most ob-
ject-oriented languages restrict generic dispatch to the first parameter, and often
even the first parameter is hidden. Generic functions are nothing new for Lisp,
since many built-in functions (such as + ) are already generic, but system support

for user-defined generic functions is new.

. In order to make generic functions attractive for application developers, generic

€
,. dispatch must not impose a significant penalty on function invocation. Previous
{i‘ 5 Fo e Coa W s . Kom pg? - .y [ S §
EYal-ThC ey oAUl ¢« & AZ TIN5 3 T30 0B 3,

studies [Deutsch83] [Krasne}83] [Cox86] have found that a giobal hash tat_zle vbased

A [
“) W 'é’\, A

; ) A (i~ 3= o
cache can improve method lookup performance considerably, but whether these

results extend to Eeperic functions and multiple parameter dispatch is not clear. In
: = 5 ) 2T XYl @ UAN Ve TG NG
this paper, theoretical results for open addréssed hashing are used to form a cost

~ o0 lH /}u’ g"cg‘"“‘””“gd, TR L g IB E2GNIT A IE AL AT R ¢ T2 g

; I tion-of-the amount of memory
QAN Vuwd A 1,328 2128, AZN mz,&%mzsﬁg‘ £ 3 3
utilized, and the cost function is minimized, to’yield an optimum hash table size
B, s AT HELE B e U, D ($95% )9 AR 10 3d 13 i\y354
for_a given number of methods. Optimization_techniques, such as those applied
Kixa &g qi,. ‘g?%;\géc;é'& o
here, have seen wide use throughout other branches of engineering, but, for some

o

reason, most software engineering design studies have failed to utilize them, even
though theoretical results on the performance of important algorithms have been

available for many years. The results of this optimization rocedure are not specific
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to generic dispatch, but appﬁigb%‘wherever open addressed ha\?hing is a part of
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The hashmg algorithm addresses direct method Iookup and lookup of inherited

Tority PRI T BwaXubil 25725, j'4’i}>tru~~w*1m 713 2. 9)

methods when the number of combinations of subclasses in the mﬁgﬂecmhzed parameter

W2 T INT G SR TLE Ky B [0 Py (DR

list is small. When the number of parameter specxahzer combmatlons is large,
WOTHN R 2 T 120 9 ) P Y LN G

however, a different algorithm may be needed becausé the amount of memory re-

quired for the hash table becomes unwieldy. To better support inherited method
lookup, a novel encoding scheme is suggested for assigning umque ids to classes.

132 b 2=~=7)
The scheme derives a class’s identifier for use as a hash and search key by encod-

ing the class precedence list. Evidence is presented from three inheritance hierar-

chies in the literaturd [ [Goldberg86] [AN 8188] [O’Bnen87] that the encoding scheme __

is reasonable for real systems. A[ temary tree based algorithm is described for in-

\;"”'

herited method lookup. The results suggest a hash table for generic functions where
the number of inherited parameter specializer combinations is small, and a ternary
tree with a hash table cache when the number of combinations is large. The dis-
patchmg algonthm assumes one dispatch table per generic function, as in the Port-

Y g,/l\.

=N
able éorﬁm on Loops (PCL) lmplementanon of CLOS [Bobrow86]

The next section surveys previous work in enhancing the performance of generic
dispatch for other object-oriented languages. In Section 3, the optimum size of the
hash table is derived, as a function of the number of methods defined on the
generic function. Section 4 develops the encoding scheme for generating unique
class ids, based on the class precedence lists, while Section 5 presents the ternary
tree based algorithm for inherited method lookup. Finally, Section 6 summarizes

the paper.

' Previous Work
“:fr 0 E;\&_, y \U\ < T
) For smgle 1nher1tance statlcally typed object-oriented languages (such as C++

[Stroustrup86]), inherited methods can be efficiently implemented by a pointer to
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the method function at a fixed offset in the objecf When a method invocation lsk
complled code for retnevmg the function pointer through an index into the object’s
/ inherited method function table, and for invoking the method functlon mdrrectly

via the function pomter is generated. Such an unplementanon is extremely effi-
— =y qr\,“ b YD Conn

crent, since the overhead is mere ly the cost of a mem reference and an indirect

DTH 3, TN= A7, Rts, X=9 40 4148 ¢ | ]w:ﬁ)m/ T CTURY, 9003

functlon call substrtuted in-line at the site of the method invocation. Because the

429921 £, {'” d(%—")t((‘?&"f’rféizt‘("ﬁxf/ 3

classes cannot change during execution, the mhented method table need not even
75y oW an sa S Geg0, X Yol g8k & BASZA78 )b AP (G2t

be kept in a class object. For methods which are not 1nher1ted the overhead of

ST U X7k 2 T&D
maintaining a pointer to the function in the object can be dispensed with entirely,

and the method invocation can simply be compiled as a drrect functlon call i in line,
L}\v\‘ LTt ;//(,'b

since the type of the first parameter is known at comprfe[: trme and the address of
the function is known at link time.
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In single mhentance dynamxcally typed languages, such as Smalltalk [Goldberg83)

and Objective-C [Cox86], a Rrogram-wrde cache as well as (indexing mto a class-
‘) ERA N /Lx)/‘fl“\l /12’)\\/\{‘DV‘L ’)\ )5:«\() i I T A" /“/\)(
based method function table have been used to speed mxhodloL&Jecxally

T <. for %nherlted methods. The usual technique is to maintain a program-wide cache
ALt T

of most recently used method functions, with the class of the first parameter and

e
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the method name (or selector) as hash ke%_[ﬁox%] [Krasner83 Inf [Cox86] and
\lCox§4| a program-vwde cache 1rnproved meﬁhod mvocatron time to an average of

LA IR w‘v‘izﬂf\e& (= &Y 4 Dei{c a CN 20N E )= Xk
about 25 ;}mées ahfunj on cg‘lrfrom 2w 'S Reas ? rn?es fvhen loolgup of an =
it *i- \xﬁ W,»’)é ., bh(&\‘qu'\ T
uiLhente method was requlred Indexe lookup had an invocation time of about
71 Tﬁ 20 ) Wl Ta 4 215, A4F V¥
2.0 times a function call, but the in exe mﬁlementatxon requlred consrd{era ‘
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more space (one machme wor}d } 1{ each method in eac classs f'gure d% 9%
is cited for the cache hit ratio (ratio of cache hits to total method invocations) in

typical applications.
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Similar figures have been found for caching in Smalltalk in an implementation

found to improve by about 20-30% with a cache hit ratio of 85-99%. The execu-
Fxadoa G 2 wé/*(fmf‘m e g fe BN
tion speed w Judged to e onjy etween 1.0 d 4.5% slower than the optlmal
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od' mvocatlon txm\e as\su]rmng zero method accessioverheétc'l\ Since mallta.{k
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fully ob]etct-orzlented comparlsons with function calls are not possrble Im’ﬁ)gtschﬁ)

) i, UlallerT AL, 0HAT I TP\ a (BN T2 5
7 riher refinement is descnb?zd In addmon to the global method cache, an in-
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line cache of thc most recently used method is mamtarned at the method invoca-
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tion site. The invoked method’s address and the address of the “class obJect are
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dynarmcally linked in at the invocation site if a cache miss occurs, and a hit the
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next time through the rnetho% r;sults in no overhead except for verrfyrng the in-
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line caghe\)s validity. Together with an, optnmzmg translator to machlne code, an
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j1m Iem tation performed about twice as fast as the byte code interpreter. Note
:2- " ”f’ i’Q(' - ‘S
that the act a] oi{/erhead of an in-line cache in the case of a cache hit is only one
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instruction more t an for a singly 1nhented statlcally typed language and that in-
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structron is the check for the vahdlty f the cache. The avérage o overhead will be’
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slrghtly more, and depend on the hit ratio, which, in tirn, will be a functron
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of the application mix.
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In-line caching involves self—modlfymg code since the results of a lookup when a
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