GeoFlavors:

GeoFlavors, a complete Flavor toolkit for integrating maps into LISP
Machine window systems is now available for developers. GeoFlavors supports
rapid integration of maps into LISP Machine applications software.
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GEOFLAVORS INTEGRATES EASILY -
PROVIDES AN EXTENSIVE
MAPRP DATABASE
Features: R
¢ Fully supported World Data Bank I and 1I

¢ ZOOM and UNZOOM software methods using MOUSE

¢ Methods which support direct use of LAT/LONG
coordinates for all graphics operations

¢ Color and pattern fill

* Comprehensive documentation and source code examples
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GeoFlavors is provided with extensive documentation and many complete
examples in source code which illustrate in detail how to best use GeoFlavors.

- VERAC engages 1in both contract research and commercial software development.
For further information about GeoFlavors, OPS5e, and other VERAC products
contact:

Applied Computer Science Group e VERAC, Incorporated
Marketing Administrator e 9605 Scranton Road, Suite 500
San Diego, California 92121 e (619) 457-5550
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PART TWO

H. Penny Nii

Blackboard Systems

Blackboard Application Systems, Blackboard Systems
from a Knowledge Engineering Perspective

Blackboard Application Systems

The application systems described here are presented in
chronological order. The design of many of the systems
is similar because of similarities in the application tasks,
propagation of ideas, or involvement of the same design-
ers. Figure 1 shows a general chronology and intellec-
tual lineage of the various application and skeletal sys-
tems. The figure includes some of the better-known and
better-documented systems. Only a few of the many ap-
plication systems are described here, they were chosen be-
cause they illustrate different designs and because they
contributed new ideas and features to the repertoire of
blackboard system architectures. For each application, the
task and domain characteristics are described. The de-
scription is followed by a summary of the system design in
four parts: the blackboard structure, the knowledge source
organization, the control component, and the knowledge-
application strategy employed. Unique features in the sys-
tem are pointed out and discussed within the context of
either the application task or its history.

H. Penny Nii is at Knowledge Systems Laboratory, Computer Science
Department, Stanford University

This work was supported by grants from the Advanced Research
Projects Agency (N0039-83-C-0136), the National Institutes of
Health (5P41 PR-00785), and Boeing Computer Services (W266875).

I have been waiting a long time for someone to write a comprehensive
article on blackboard systems. I finally decided to give it a try, and
it turned out to be a bigger job than I expected. The skeletal black-
board systems still need to be reviewed. Without the help of many
friends and colleagues, this article would not be, and I would like to
thank them all here. Ed Feigenbaum has been supporting a variety
of research related to blackboard systems for many years. Without
his support, many of the systems mentioned in this paper would not
have been built. Bob Engelmore appeared every Tuesday morning
at 8:30 to check on my progress in writing, to comment on my ap-
proach, and to discuss various aspects of blackboard systems. The
many hours of discussion with Harold Brown on wide-ranging topics
clarified my thoughts about the blackboard model and blackboard
systems. In addition to Bob and Harold, James Rice, John Delaney,
and Peter Friedland helped make the article readable. I also want to
thank Herbert Simon, who gave me pointers to the earlier work, and
Lee Erman, who patiently explained the details of the HEARSAY-11
design. Although I have tried to be neutral with respect to the many
aspects of blackboard systems, sometimes this was a difficult goal to
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Skeletal systems are devoid of domain knowledge and,
as the name implies, consist of the essential system com-
ponents from which application systems can be built by
the addition of knowledge and the specification of con-
trol (that is metaknowledge). Application systems are
discussed in the first section, Blackboard Application Sys-
tems and skeletal systems will be discussed elsewhere. In
summary, we summarize the features of the application
systems. In Blackboard Systems from a Knowledge Engi-
neering Perspective, the author’s perspective on the utility
of the blackboard approach to problem solving and knowl-
edge engineering is discussed.

Abstract

The first blackboard system was the Hearsay-II speech-
understanding system (Erman et al. 1980), which evolved be-
tween 1971 and 1976. Subsequently, many systems have been
built that have similar system organization and run-time be-
havior. The objectives of this document (a part of a retrospec-
tive monograph on the AGE Project currently in preparation)
are (1) to define what is meant by blackboard systems and (2)
to show the richness and diversity of blackboard system de-
signs. In Part 1 we discussed the underlying concept behind all
blackboard systems—the blackboard model of problem solv-
ing. In order to bridge the gap between the model and working
systems, we introduced and discussed the blackboard frame-
work. We also traced the history of ideas and designs of some
application systems that helped shape the blackboard model.
In Part 2, we describe and contrast existing blackboard sys-
tems. Blackboard systems can generally be divided into two
categories: application systems and skeletal systems. In ap-
plication systems, the blackboard system components are inte-
grated into the domain knowledge required to solve the problem
at hand.

achieve. Any biases, misrepresentations, and associated blame are
mine alone.
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HEARSAY-II

Most of the background information on HEARSAY-II (Er-
man et al. 1980) was covered in Part 1 of this article
and is not repeated here. One additional item of his-
torical context is worth noting, however. Various contin-
uous speech understanding projects were brought under
one umbrella in the Defense Advanced Research Projects
Agency (DARPA) Speech Understanding Project, a five-
year project that began in 1971. The goals of the Speech
Understanding Project were to design and implement sys-
tems that “accept continuous speech from many cooper-
ative speakers of the general American dialect in a quiet
room over a good-quality microphone, allowing a slight
tuning of the system per speaker, by requiring only natural
adaptation by the user, permitting a slightly selected vo-
cabulary of 1,000 words, with a highly artificial syntax . ..
in a few times real time...” (Newell et al. 1973). Hearsay-
IT was developed at Carnegie-Mellon University for the
Speech Understanding Project and successfully met most
of these goals.

The Task The goal of the HEARSAY-II system was to
understand speech utterances. To prove that it under-
stood a sentence, it performed the spoken commands. In
the earlier HEARSAY-I period, the domain of discourse
was chess (for example, bishop moves to king knight five).
In the HEARSAY-II era, the task was to answer queries
about, and to retrieve documents from, a collection of com-
puter science abstracts in the area of artificial intelligence.
For example, the system understood the following types of
command:

“Which abstracts refer to the theory of com-

putation?”
“List those articles.”

“What has McCarthy written since nineteen
seventy-four?”

The HEARSAY-II system was not restricted to any
particular task domain. “Given the syntax and the vo-
cabulary of a language and the semantics of the task, it
attempts recogaition of the utterance in that language.”
(Reddy, Erman, & Neely 1973b.) The vocabulary for the
document retrieval task consisted of 1,011 words in which
each extended form of a root, for example, the plural of
a “noun”, was counted separately. The grammar defining
a legal sentence was context-free and included recursion,
and imbedded semantics and pragmatic constraints. For
example, in the place of “noun” in conventional grammars,
this grammar included such nonterminals as topic, author,
year, and publisher. The grammar allowed each word to
be followed, on the average, by seventeen other words in
the vocabulary.

The problem of speech understanding is characterized
by error and variability in both the input and the knowl-
edge. “The first source of error is due to deviation between
ideal and spoken messages due to inexact production [in-
put], and the second source of error is due to imprecise
rules of comprehension [knowledge].” Because of these un-
certainties, a direct mapping between the speech signals
and a sequence of words making up the uttered sentence
is not possible. The HEARSAY designers structured the
understanding problem as a search in a space consisting
of complete and partial interpretations. These interpreta-
tions were organized within an abstraction hierarchy con-
taining signal parameters, segments, phones, phonemes,
syllables, words, phrases, and sentence levels. This ap-
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proach required the use of a diverse set of knowledge that
produced large numbers of partial solutions on the many
levels. Furthermore, the uncertainties in the knowledge
generated many competing, alternative hypothetical in-
terpretations. To avoid a combinatorial explosion, the
knowledge sources had to construct partial interpretations
by applying constraints at each level of abstraction. For
example, one kind of constraint is imposed when an adja-
cent word is predicted, and the prediction is used to limit
subsequent search. The constraints also had to be added
in such a way that their accrual reduced the uncertainty
inherent in the data and the knowledge sources.

In order to control the combinatorial explosion and
to meet the requirement for near real-time understanding,
the interpretation process had to be selective in exploiting
the most promising hypotheses, both in terms of combin-
ing them (for example, combining syllables into words)
and in terms of predicting neighboring hypotheses around
them (for example, a possible adjective to precede a noun).
Thus, the need for incremental problem solving and flex-
ible, opportunistic control were inherent in HEARSAY’s
task.

The Blackboard Structure. The blackboard was par-
titioned into six to eight (depending on the configuration)
levels of analysis corresponding to the intermediate levels
of the decoding process.! These levels formed a hierarchy
in which the solution-space elements on each level could
be described loosely as forming an abstraction of informa-
tion on its adjacent lower level. One such hierarchy was
comprised of, from the lowest to the highest level: para-
metric, segmental, phonetic, phonemic, syllabic, lexical,
phrasal, and conceptual levels (see figure 3). A black-
board element represented a hypothesis. An element at
the lexical level, for example, represented a hypothesized
word whose validity was supported by a group of syllables
on the syllable level. The blackboard could be viewed as
a three-dimensional problem space with time (utterance
sequence) on the x-axis, information levels containing a
hypothesized solution on the y-axis, and alternative solu-
tions on the z-axis. (Lesser et al. 1974)

Each hypothesis, no matter which level it belonged
to, was constructed using a uniform structure of attribute-
value pairs. Some attributes, such as its level name, were
required for all levels. The attributes included a validity
rating and an estimate of the “truth” of the hypothesis
represented as some integer value. The relationships be-
tween the hypotheses on different levels were represented
by links, forming an AND/OR tree over the entire hierar-
chy. Alternative solutions were formed by expanding along
the OR paths. Because of the uncertainty of the knowledge
sources that generated the hypotheses, the blackboard had

1See Lesser & Erman [1977] for a comprehensive discussion on
the results of experiments conducted with two different blackboard
configurations.
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HEARSAY-II Blackboard and Knowledge Sources
Figure 3

a potential for containing a large number of alternative hy-
potheses.

The Knowledge Source Structure. Each knowl-
edge source had two major components: a condition part
(often referred to as a precondition) and an action part.
Both the condition and the action parts were written as
arbitrary SAIL procedures. “The condition component
prescribed the situations in which the knowledge sources
may contribute to the problem solving activity, and the ac-
tion component specified what that contribution was and
how to integrate it into the current situation.” (Erman et
al. 1980) When executed, the condition part searched the
blackboard for hypotheses that were of interest to its cor-
responding action part; all the relevant hypotheses found
during the search were passed on to the action part. Upon
activation, the action part processed all the hypotheses
passed to it. The tasks of the knowledge sources ranged
from classification (classifying acoustic segments into pho-
netic classes), to recognition (recognizing words) to gener-
ation and evaluation of predictions.

Control. The control component consisted of a black-
board monitor and a scheduler (see Figure 4). The mon-
itor kept an account of each change made to the black-
board, its primitive change type, and any new hypotheses.
Based on the change types and declarative information
provided by the condition part of the knowledge sources,
the monitor placed pointers to those condition parts that
potentially could be executed on a scheduling queue. 2 In

In Figure 4 the “Focus-of-control database” contained a table of
primitive change types and the condition parts that could process
each change type. The primitive change types possible within the
system were predefined and consisted of such items as “new syllable”
and “new word created bottom up”. This paragraph is based on
discussions with Lee Erman.




addition to the condition parts ready for execution, the
scheduling queue held a list of pointers to any action parts
ready for execution. These actions parts were called the
mwoked knowledge sources. A knowledge source became in-
voked when its condition part was satisfied. The condition
parts and the invoked knowledge sources on the schedul-
ing queue were called activities. The scheduler calculated
a priority for each activity at the start of each system cycle
and executed the activity with the highest priority in that
cycle.

In order to select the most productive activity (the
most important and promising with the least amount of
processing and memory requirements), the scheduler used
experimentally derived heuristics to calculate the prior-
ity. These heuristics were represented as imbedded pro-
cedures within the scheduler. The information needed by
the scheduler was provided in part by the condition part of
each invoked knowledge source. The condition part pro-
vided a stimulus frame—a set of hypotheses that satis-
fied the condition—and a response frame—a stylized de-
scription of the blackboard changes the knowledge source
action-part might produce upon execution. For example,
the stimulus frame might indicate a specific set of sylla-
bles, and the response frame would indicate an action that
would produce a word. The scheduler used the stimulus-
response frames and other information on the blackboard
to select the next thing to do.

The control component iteratively executed the fol-
lowing basic steps:

1. The scheduler selected from the scheduling queue
an activity to be executed.

2. If a condition part was selected and executed and if
it was satisfied, a set of stimulus-response frames
was put on the scheduling queue together with a
pointer to the invoked knowledge source.

3. If an action part was selected and executed, the
blackboard was modified. The blackboard mon-
itor posted pointers to the condition parts that
could follow up the change on the scheduling
queue.

The problem of focus of attention was defined, in the
context of this architecture as a problem of developing a
method which minimized the total number of knowledge
source executions and which achieved a relatively low rate
of error. The focus of attention problem was viewed as
a knowledge scheduling problem as well as a resource-
allocation problem. 3 In order to control the problem-
solving behavior of the system, the scheduler needed to
know the goal of the task and the strategies for knowledge

3If we compare the HEARSAY-II control constructs with those of
the blackboard framework discussed in Part 1, they are basically the
same. Some aspects of the control in HEARSAY are emphasized
more (for example, scheduling) than others.
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application to be able to evaluate the next best move. Al-
though various general solutions to this problem have been
suggested (Hayes-Roth & Lesser 1977), it appears that ul-
timately one needs a knowledge-based scheduler for the ef-
fective utilization of the knowledge sources. (The current
work of Barbara Hayes-Roth [1985] on the BB-1 system
elaborates this point.)

Knowledge-Application Strategy.  Within the sys-
tem framework described earlier, HEARSAY-II employed
two problem-solving strategies. The first was a bottom-up
strategy whereby interpretations were synthesized directly
from the data, working up the abstraction hierarchy. For
example, a word hypothesis was synthesized from a se-
quence of phones. The second was a top-down strategy
in which alternative sentences were produced from a sen-
tential concept, alternative sequences of words from each
sentence, alternative sequences of phones from each word,
and so on. The goal of this recursive generation process
was to produce a sequence on the parametric level that
was consistent with the input data (that is, to generate
a hypothetical solution and to test it against the data).
Both approaches have the potential for generating a vast
number of alternative hypotheses and with it a combina-
torially explosive number of knowledge source activations.
Problem-solving activity was, therefore, constrained by se-
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lecting only a limited subset of invoked knowledge sources
for execution. The scheduling module thus played a crucial
role within the HEARSAY-II system.

Orthogonal to the top-down and bottom-up ap-
proaches, HEARSAY employed a general hypothesize-and-
test strategy. A knowledge source would generate hypothe-
ses, and their validity would be evaluated by some other
knowledge source. The hypothesis could be generated by
a top-down analytic or a bottom-up synthetic approach.
Often, a knowledge source generated or tested hypothe-
ses by matching its input data against a “matching pro-
totype” in its knowledge base. For example, a sequence
of hypothesized phones on the phone level were matched
against a table containing prototypical patterns of phones
for each word in the vocabulary. A word whose phones
satisfied a matching criterion became a word hypothesis
for the phones. The validation process involved assigning
credibility to the hypothesis based on the consistency of
interpretation with the hypotheses on an adjacent level.

At each problem-solving step, any one of the bottom-
up synthesis, top-down goal generation, neighborhood pre-
diction, hypothesis generation, and hypothesis evaluation
might have been initiated. The decision about whether a
knowledge source could contribute to a solution was lo-
cal to the knowledge source (precondition). The decision
about which knowledge source should be executed in which
one of many contexts was global to the solution state (the
blackboard), and the decision was made by a global sched-
uler. The scheduler was opportunistic in choosing the next
step, and the solution was created one step at a time.

Additional Notes

e The condition parts of the knowledge sources were
complex, (CPU)-intensive procedures that needed to
search large areas of the blackboard. Each knowledge
source needed to determine what changes had been
made since the last time it viewed the blackboard. To
keep from firing the condition parts continually, each
condition part declared a priori the kinds of black-
board changes it was interested in. The condition part,
when executed, looked at only the relevant changes
since the last cycle. All the changes that could be
processed by the action part were passed to it to avoid
repetitive executions of the action part.

e The HEARSAY-II system maintained alternative hy-
potheses. However, the maintenance and the process-
ing of alternatives are always complex and expensive,
especially when the system does not provide support
for this. In HEARSAY-II the problem was aggravated
by an inadequate network structure that did not al-
low the shared network to be viewed from different
perspectives. In the current jargon, it did not have
good mechanisms for processing multiple worlds.*

4Currently, there are better techniques for processing and maintain-
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o The evidence to support a hypothesis at a given level
can be found on lower levels or on higher levels. For
example, given a word hypothesis, its validity could be
supported by a sequence of syllables or by grammati-
cal constraints. The evidential support is represented
by directional links from the evidence to the hypothe-
sis it supports. The link that goes from a higher-level
to a lower-level hypothesis represents a “support from
above” (that is, the justification for the hypothesis
can be found at a higher level). A link that goes in
the opposite direction represents support from below
(that is, the reason for the hypothesis can be found
at a lower level). Although the names of the support
mechanisms were first coined in HASP (Nii & Feigen-
baum 1978), the bidirectional reasoning mechanisms
were first used in the HEARSAY-II system.

e In HEARSAY-II the confidence in a hypothesis gen-
erated by a knowledge source was represented by an
integer between 1 and 100. The overall confidence
in the hypothesis was accumulated by simple addi-
tion of the confidence attached to the evidence (that
is, supporting hypotheses). When the confidence in a
hypothesis was changed, the change was propagated
up (if the support was from below) and down (if the
support was from above) the entire structure.

HASP /SIAP

ing alternative worlds. However, these techniques have yet to be
integrated into blackboard systems.




