The International Conference on Fundamentals of Electronics, Communications and Computer Sciences, March 27, 28,2002, Waseda Univ Tok)'o ; 7

A Layer Enabling Transport Independent Connection

Yuicht Ueno
Fugi Xerox Co., Ltd.
430 Sakai, Nakai-machi, Ashigarakami-gun
Kanagawa 259-0157
Japan

Yarchn Uenowfupneron.cojp

Abstract - The TCP/IP technology intrinsically enables sym-
metric communication model. However, today’s communi-
cation services adopt asymmetric model, And the model is
“hard-coded” to simplity implementiation and management.
Usual middle-ware technologies provide mechanism to enable
transport iver independence, However, these technologies
can not handle both transport independence and quality of
service simultuncosdy, We have developed o new layer en-
abling transport independent connection, as o Java compo-
went. The haver ennbles endpoint migration and pluggable
commuication chunpel, We deseribe design and current im-
pementation of ;e component. Furthermore, by meisuring
conununloation pedformance of our component, we show our
vomponent cun deaw Tull performance from un underlying
connnnnication haanel

OINTRODECTION

Pandamental Tunctionality of commumcation service 1s
peanarciont of connectnaty between endpomts winch are
The

FOP/IE technolopy ntnnsically enables symmetnie com:

Ao nated withe apphoation proprnms respectively.

municahion model, However, today’s conumunicition ser
vices adopt asymmetric model, Connectivity munagement
between communication services is an issue for which
higher layer over transport layer should take on the respon-
sibility. Since each application program tackles the issue
individually, role specialization of a server/client is “hard-
coded” onto application program and is managed on partic-
ular node for simplifying.

Distributed object technology CORBA[S] and Java
RMI[7] can make communication service independent
from node by means of concealing communication channel
with object request broker(ORB) layer. However applica-
tion cannot be aware of latency or bandwidth of communi-
cation channel. Data communication and multimedia com-
munication require different quality of service(QoS) each
other. Network transparency rather complicates construc-
tion of reliable network services because it makes QoS con-
trol harder[9].

MobileSocket[6] and Medlar[4] offer continuous con-
nection for migrating node across subnets. The former
is realized as substitution of java.net.Socket class
which manages implicit/explicit reconnection of an under-
lying TCP-socket connection. The latter provides ded-
icated proxy which conceals communication channel to
server peer and manages QoS. They support migration of
client node itself across subnets. They don’t support mi-
gration of connection across nodes.

We introduce a new layer enabling transport indepen-
dent connection, as a Java[2] component. The layer en-

Masayuki Ida
Aoyama Gakuin University
4-4-25 Shibuya, Shibuya
Tokyo 150-8366
Japan
ida @ gsim.aoyama.ac.jp

ables endpoint migration (shown at Fig.1) and pluggapje
communication channel. In “digital convergence” era, very
diverse services should be provided through computer ge.
vices which exist ubiquitously. Our component is a bage
technology for node independent communication services
which will be demanded in that era.

We introduce design and initial implementation of oy
component i this paper. Furthermore, we measure perfor-
numee ol the nitial implementation and evaluate reasop-
abihity of the design.

I1. DESIGN

A EFlements and Roles

I, 2 illustrates design overview of our component.

We introduce a layer providing transport layer indepen-
dent connection. We design our component as two-layered
structure consists of ForwardableSocket object and Con-
nector object.

forwardableSocket object provides application program
interface (API). And, it conceals detail of procedures of
transport layer level connection. Socket reconnection is
processed internally responding to peer endpoint migration.
And buffer synchronization is performed if needed.

Connector object is an adapter which encapsulates trans-
port layer level socket into uniform interface for Forward-
ableSocket.

ContractManager objects which manage connectivity
based on agreements between services or nodes. Our com-
ponent provides generic interface of ContractManager-
Each application must implement dedicated ContractMan-

ager. Strictly speaking, there are two types of Contract -
Manager objects: ServiceContractManager and Terminal-

ContractManager. The former handles ServiceContract

object and the latter handles TerminalContract object 1¢ 1

spectively.

migratio

1 contract for

ﬁ *, Node-C connection
. " migrated
endpoint——__| ,do\ connection

Node-A

Fig. 1 . Endpoint migration

local states ~ Application Jocation independent Application local states
ession information connectivity session information
et - i -
1 - Al | i - !
1| Service Forwardable 9) contrg our tcr%réggl : Forw Servica) |!
1| (Contract Socket ¢ icati ! S Contractj|}
~-- communication--- (
i|(Terming i : component i Contract rerma |
1| (Contract Connettor |1 P : Contraci
3 b
[y ! > ——————==.
: q‘commumcatlon channgL

Transport Layer

Transport Layer

controf channel

Fig. 2 . A layer enabling transport independent connection

Each Contract object is placeholder for runtime informa-
tion against the agreements. Endpoint migration is ac-
companied by ServiceContract object migration. Applica-
tion program can also use ServiceContract to suspend local
states before migration and to resume local states after mi-
gration.

B. Application Program Interface

ForwardableSocket acts as a communication endpoint
for applications. ForwardableSocket provides API for con-
nection oriented connectivity control and datagram-passing
style communication operation. Implementation of Con-
nector assures reliability and sequential delivery of data-
gram.

Fig.3 illustrates state diagram of ForwardableSocket as
client socket. Like TCP-socket, connect operation attempts
to make a connection to another ForwardableSocket. How-
ever, unlike TCP-socket, this attempt is performed un-
der the control of ContractManager which is implemented
with application. This design enables application to control
connection by own policy.

ForwardableSocket is also server socket. Fig.4 illustrates
state diagram of ForwardableSocket as server socket. Like
TCP-socket, accept method returns a new socket corre-
sponding to incoming connection.

orﬁlar ng
negotiation

----- - Jorward

Established
. '—"A suspend,
————— suspend requested
Resuming | Suspendlng H Forwarding ,»__
negotiation negotlatlo negonatlon

80 o’gt‘alratlon / Trgger detected
Operahon re[ected

[_ State

[stateqransieny] ---

Fig. 3 . State diagram as client socket

In the same way as the above discussion, connectivity con-
trol is managed by ContractManager.

We provide three types operations for Forwardable-
Socket: forward, suspend, resume. These operations make
connection node independent.

ForwardableSocket can be forwarded to other ones. If
the forwarding succeeds, the ForwardableSocket itself is
closed on forwarder node side, and a new Forwardable-
Socket is created on forwardee node side. Since Service-
Contract and internal buffer of Connector is migrated dur-
ing this operation, ForwardableSocket reconstructs connec-
tion properly. Consequently, the newly created Forward-
ableSocket and the peer ForwardableSocker against it can
keep operating continuously. The application on the peer
node against the forwardee node don’t have to be aware of
the detail of this reconnection procedure in transport layer
level, because our components conceals it.

The suspend and the resume operations perform sus-
pending/resuming connection between services respec-
tively. Suspend operation attempts. to disconnect Connec-
tor, but keeps ServiceContract. Resume operation attempts
to reconnect Connector based on the kept ServiceContract.

Fig.5 illustrates example code of connection migration.
Each service has daemon thread and service thread. Dae-
mon thread accepts newly connection or forwarded connec-
tion. Then the daemon thread starts service on the connec-
tion.

e

elose

Listen

connect requested,

forward yoaue sted

Connecling | |7 Forwarding
Ht‘(J(l[I hon nuollallon

)

N SR

esumlng
negotlanon

— Da o rahon/ Trigger detected
"”J Au»Opergeon e’
> Operation rexecled

State dryram as server socket

\
"

Servi N Service on
" puBie voig Tun() { \ (pubkcvedran(y T)
for () { for ()4
ForwardableSocket sock = Forward. |....e- OwardableSocket sock =
¥ daemonSock.accept(S " daemonSock.accept();
service.start(sock}. operatiant service start(sock);
¥ s _} daemon
£/ pubivoid / public void
| ~Star{ForwardableSocket sock) { start{ForwardableSocket sock) {
'séck‘receive(message); ConcreteServiceContract sc =
e st s of (s ol st f s
G S eieontraXt sc = according fo service contract *sc”
sock.getServiceContragt(); .
. (store local state of servic sock.send(message):
%, into service contract "sc’)
;sock.forward(addr); }
servi service,
\ R =)
Migrated connection -
Cannect)K......... S e

operati

ALY

public void)
start{ForwartiableSocket sockf {

Address addr
the service on
... sock.connect(

(get addresf of
de B);

's'éck‘send(mess e);

sock receive{messal

Fig. 5 . Migrating service on B to C

In this example, connection is migrated from service on
node B to service on node C. Service on node A can handle
message continuously through same socket.

C. Requirements for socket encapsulation

Connector must provides a communication channel
which enables datagram-passing style communication and
primitive connection/disconnection controlling operations.
ForwardableSocket directly delegates send operation and
receive operation to Connector. Any of concrete socket
operation is allowed for sending/receiving datagram. For-
wardableSocket is not aware of reliability or Sequential de-
livery of datagram. Application program must select proper
Connector corresponding to requirements of QoS. Our de-
sign allows development of various kinds of Connector.

Furthermore, Connector must provide a control channel
which has communication semantics as sequenced, reli-
able, two-way, connection-based byte streams. This is used
internally by the ForwardableSocket to control communi-
cation channel. Any concrete implementation of control
channel is allowed if it satisfy the above communication
semantics.

D. Connection Control with ContractManager

As we described in section I1.B., ContractManager is re-
sponsible for management of control of service level con-
nectivity between communication services. ContractMan-
ager must manage life-cycle of ServiceContract and Termi-
nalContract depending operations on ForwardableSocket.

Our component provides generic interfaces for Contrgey.
Manager which responsible for ServiceContract and Term;.
nalContract respectively. The former is ServiceContram .
Manager interface. The latter is TerminalContractManage'r
interface. Each application must implement concrete Ones.

Fig.6 describes ServiceContractManager interface.
interface defines basic property of communication Service.
getServiceAddress represents listening an address of das.
mon thread’s socket on service. createConnector is fac
tory method to create concrete Connector instance Suit.ibie
for QoS demand of service. Connection control must py
programmed in createServiceContract and updateSery,
Contract methods. Based on both sides ServiceCongrg
communication service can decide to accept or deny incofg.‘
ing connection.

Fig.7 illustrates the sequence of connect-operation, Oy
the figure, Host! attempts to connect to Host2. This opers-
tion is performed through a control channel of Connect,
Both sockets exchange contract each other, then they ¢
cide to accept or deny incoming connection by checking
the contract.

public interface ServiceContractManager {
public Address getServiceAddress();
public Connector createConnector();
public ServiceContract
createServiceContract(String action,
TerminalContract terminalContract)
throws ServiceContractException;
public void
updateServiceContract(ServiceContract localContract,
String action,
TerminalContract terminalContract,:
ServiceContract remoteContract)
throws ServiceContractException;
public byte [] marshaiContract{ServiceContract contract);
public ServiceContract unmarshalContract(byte [] contract};
}

Fig. 6 . Interface for controlling service level connection

Host2

HO t1 establish Connector
==« Jgvel connection

~——
~—o
gquest to connect

cretare » '<

service comracy] 0

e
service contract

create
service coptracl

update
service contract

Fig. 7 . Connect operation with exchanging contracts

I1I. IMPLEMENTATION FOR
JAVA 2 PLATFORM, STANDARD EDITION

1 [/DP-socket Adapter

we have developed a UDP-socket adapter class called
Si,npleDamgramCon.nector (SDC). Fig.8 illustrates inter-
nal structure of SDC. SDC uses java.net.Data-
qramsocket class (UDP-socket support in Java) as a
communication channel. Thus, this connector provides un-
reliable communication channel.

On compile time, application uses uniform interface
defined for ForwardableSocket APL. On the other hand,
on run time, application can handle directly java.
net .DatagramSocket by means of object oriented
echnique. As we mentioned in the section I1.C., Forward-
ableSocket just delegates send/receive operation to Con-
nector object’s ones. This Connector class, furthermore,
just delegates them to java.net.DatagramSocket.
Qur component rarely imposes overhead upon application
if you use this Connector.

B. TCP-socket Adapter

We have also developed a TCP-socket adapter class
called SimpleStreamConnector (SSC). Fig.9 illustrates in-
ternal structure of SSC. This connector provides reliable
communication channel.

To assure this even if forward operation is performed,
SimpleStreamConnector handles a synchronized internal
buffer and performs sending the buffered data after con-
nection migration. On this design, there is overhead to
copy and synchronize internal buffer for application if you
use this Connector. Big issue for implementation on the
control is “I/O blocking”. If a running thread enters into
“I/0 blocking” status, ForwardableSocket can not control
the thread. Synchronized internal buffer control is also a
safety mechanism to avoid “I/O blocking”.

C. Adopting Object Oriented Design Using Javadoc Tool

On-the design process, we have used the Javadoc[8] tool.
We discussed and refined our design on API documents

Application
send recejve

I Messdge I

[. P l
Forwaraanigoockel

DatagramSocket = Lgcommunication channgl

SimpleDatagramConnector

Contract
Manager

control channel

Fig. 8 . UDP-Socket direct manipulation

Application
send recejve
| Messdge I
I F ' |
HTWallapiC oQUREL
Contract - \]_g,(L communication
channel
Manager hntemal buff IS Socket —l—b”——’ﬁ
Internal bufler
%]t E l E> svnchronization
internal —— control channel

controf thread SimpleStreamConnector

Fig. 9. TCP-Socket with buffer synchronization

generated by the Javadoc tool. We achieved designing our
component beforehand with completed implementation.

D. Current Implementation

We have implemented our component on Java 2 Plat-
form, Standard Edition[1] version 1.3.1 which runs on
Linux version 2.2.19 with glibc version 2.1.3. We have
implemented full functions except suspend and resume op-
erations.

IV. EVALUATION

A. Performance with UDP-socket Adaprer

This experiment measures communication performance
of ForwardableSocket combining the UDP-socket adapter
SDC. The result is on TABLE 1.

TABLE 1
COMMUNICATION PERFORMANCE WITH UDP-SOCKET ADAPTER

[packet size [bytes] [IK | 2K | 4K [8K | 16K | 32K |
Elapsed time [msec.] ForwardableSocket + SDC | 834 | 1705 | 3398 | 6812 | 13654 | 27326
(sexfd) ' DatagramSocket 866 | 1733 | 3418 | 6841 | 13681 | 27341
Efficiency(%) 100+ | 100+ | 100+ | 100 100 100
Elapsed time [msec.] ForwardableSocket + SDC | 878 | 1740 | 3427 | 6847 | 13689 | 27336
(recI:eive) ' DatagramSocket 874 | 1742 | 3428 | 6852 | 13694 | 27392
Efficiency(%) 100 | 100 100 | 100 100 100

10-20

The International Conference on Fundamentals of Electronics, Communications and Computer Sciences, March 27, 28, 2002, Waseda Uniy,, Tﬁky .

We measured the total elapsed time in sending/receiving
a fixed length byte array to/from peer in 1000 times after
connection established. We used isolated 10Mbps Ether-
net for this experiment. Moreover, as a.reference exper-
iment, we measured the total elapsed time of same data-
passing operations on normal socket. Then, we com-
pared both elapsed time. We compared SDC class to
java.net .DatagramSocket class. On TABLE I,
each elapsed time is the mean of 10 times measurement.

TABLE I shows that overhead hardly appears about this
UDP-socket adapter as we intend in the design phase. This
results show that design of our component can draw full
performance from an underlying communication mecha-
nism provided by Java runtime environment. Thus, we will
be able to do porting and run UDP-communication based
Java programs very effectively on our component.

B. Performance with TCP-socket Adapter

This experiment measures communication performance
of ForwardableSocket combining the TCP-socket adapter
SSC.

We measured performance with the same condition to
the above experiment. On this experiment, reference com-
ponentis java.net . Socket class. The result is on TA-
BLEIL

As we can see in TABLE II, large overhead appears
about TCP socket family. SSC handles a dedicated inter-
nal flow control mechanism and a buffer management to
realize reliable communication through forward operation.
The overhead is compensation for this property.

However, our design can handle both java.net.
Socket class and java.net.DatagramSocket
class. Since they are primitive communication API to
build other communication mechanism, we may easily im-
prove the efficiency of the implementation by handling a
dedicated lightweight transmission control protocol.

C. Connection managementperformance

This experiment measures performance of connection
management.

We measured each elapsed time of performing con-
nect&close or forward operation. TABLE III shows the
result of this experiment. On this experiment, each elapsed

TABLE I
COMMUNICATION PERFORMANCE WITH TCP-SOCKET ADAPTER

TABLE 111
CONNECTION MANAGEMENT PERFORMANCE
[Operation' | () [() [@ [(3 (@3

| Elapsed time [msec.] | 0.737 | 60.7 | 143

' (O)connect: Socket,

132 '

()connect: ForwardableSocket + SDC,
(2)connect: ForwardableSocket + SSC,
(3)forward: ForwardableSocket + SDC,
(4)forward: ForwardableSocket + SSC

time is the mean of 100 times measurement, size of.
viceContract object is zero.

This results shows that forward operation requlres aby
double elapsed time compared to connect operation
each our component handles two temporary connecti
forwarding negotiation phase, this result reflects suc
sitional procedure and it is a necessary cost.

On the other hand, we should indicate an impr
ment point against performance difference between §
and SDC. SSC requires over double elapsed time co
pared to SDC. This result is not caused by the num
of TCP-sockets Connector uses internally, because
socket level connection is very low-cost operation.
result is caused by synchronized buffer 1mt1ahzanon
hand-shake. As we discussed in the section IV.B. , Wi
easily improve by handling a dedicated lxghtwexght i
mission control protocol.

V. CONCLUSION

We have developed a new layer enabling transpo
dependent connection, as a Java component. The
enables endpoint migration and pluggable commuri
channel. Our current implementation can handle
UDP-socket and TCP-socket as an underlying co
cation channel. Furthermore, we have showed by
ments that our component can draw full performance
an underlying communication mechanism provided by
runtime environment. Our component will be a base
nology for transport independent communication sery
and will be able to adapt to diverse services in the
convergence era.

] packet size [bytes]

| IK [2K [4K | 8K | 16K | 32K |

Elapsed time [msec] | ForwardableSocket + SSC 171504 T 2725 ['5471 [11037 | 22915 | 55791
(send) ' Socket 1135 | 2220 | 4665 | 9226 | 18976 | 37025
Efficiency(%) 75 | 81 | 85 84 83 66
Elapsed time [msec.] ForwardableSocket + SSC | 1665 | 2602 | 4742 | 8885 | 17034 | 50201
(receive) : Socket 996 | 1844 | 3659 | 7552 | 14908 | 29840
Efficiency(%) 60 | 71 77 85 88 59

[tis future work for us to design a framework which en-
les dynamical deploymf‘:nt and ?nitializ.atic.m of applica-
n prograim code for using services gblqu1t9usly. Con-
tManager can use “policy objects” in runtime environ-
;m 1o acquire basic authorization information and some
gorma[ion related to services which end-user has con-
cled to. We may ext.end the current design to become
mpliant tO Java Security Architecture[3].

VI. ACKNOWLEDGMENTS

we have created this technology through collaboration
ih members of WISP research group. We gratefully ac-
owledge contributions of Kazuhiro Kazama. His great
ntributions are by no means inferior to be listed as author.
e would like to thank Takao Maekawa, Yasuaki Nakan-
4i. Hiroshi Sasaki and Shuichi Fujieda for very creative
scussion. We would also like to thank Koichi Takiguchi,
akoto Hirose and Yoshihiro Masuda for adequate and
oughtful support for our activities.

VII. REFERENCES

| Aberdeen Group, Inc. Deliverling Real-World Benefits
with Client-Side Java Technology, 2000. URL: “http:
//iava.sun.com/j2se/1.3/whitepaperl.pdf”.

] Ken Arnold, James Gosling, and David Holmes.
The Java(tm) Language Specification, Third Edition.
Addison-Wesley, 2000.

i Li Gong. Marianne Mueller, Hemma Prafullchandra,
and Roland Schemers. Going beyond the sandbox:

[0

(7]

An overview of the new security architecture in the
Java(TM) Development Kit 1.2. In Proceedings of the
USENIX Symposium on Internet Technologies and Sys-
tems, 1997.

Minoru Katayama, Koichi Takasugi, Minoru Kubota,
and Ichizou Kogiku. A method of achieving service
continuity between different networks. Transactions of
the institute of electronics, information and communi-
cation engineers, J84-B(3):452-460, 2001.

Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification, 1999!
Revision 2.3.

Tadashi Okoshi, Masahiro Mochizuki, Yoshito Tobe,
and Hideyuki Tokuda. MobileSocket: Session layer
continuous operation support for Java applications.
Transactions of Information Processing Society of
Japan, 41(2):222-234,2000.

Sun Microsystems, Inc. Java(TM) Remote Method
Invocation Specification, 1999. URL: “ftp://ftp.
java.sun.com/docs/j2sel.3/rmi-spec-1.3.
pdf”.

How to Write Doc Com-
URL:

Sun Microsystems, Inc.
ments for the Javadoc(TM) Tool, 2000.
“http://java.sun.com/j2se/javadoc/
writingdoccomments/index.html”.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam
Kendall. A note on distributed computing. In Mobile
Object Systems: Towards the Programmable Internet,
pages 49-64. Springer-Verlag: Heidelberg, Germany,
1997.

