BAY 7 b7z 7REREIMASHMIE

Discriminating Eval

Masayuki Ida
(Aoyama Gakuin University)

The design of Discriminating EVAL (D-Eval) and its first implementation
are described. D-Eval is a CommonLoops interpreter. The extension of
the definitions of type-of and subtypep are proposed. This paper also
tries to give a transparency of the basic mechanism for CommonLoops
execution.

l.Introduction

Discriminating EVAL (D-Eval) is a multiple-value oriented extension of a EVAL
to cope with CommonLoops. In other words, it is an interpreter centered Common-
Loops implementation. This paper describes D-Eval to show a user transparent
mechanism for CommonLoops execution, but is slow.

The main purposes of this experimental developement of D-Eval are:
1) to clarify the semantics base of CommonLoops
2) to get a simple CommonLoops for a base of the extensive design
3) to analize the Common Lisp / CommonLoops functionality

CommonLoops [Bob86] is an object oriented facility for Common Lisp and
is the Dbase for the comming standard of Common Lisp object oriented facility.
Xerox Parc, which is the original designer of CommonLoops distributes Portable
CommonLoops (PCL) among the Common Lisp community.

PCL is compiler centered and is no longer a simple pilot implementation
for the novices. The primary concern on developing D-Eval at first is to make a
milestone between Common Lisp and CommonLoops.

. D-Eval is written in PCL, but can be rewritten in Common Lisp without

PCL. This paper assumes the basic knowledge on CommonLoops [Bob86]1 and Common
Lisp [Steele84].

2. D-Eval as a multiple value Eval

Fig. 1 shows the conversation with D-Eval. Two values are always returned
after evalutaing the form. The first wvalue is the value (first value) of the
form, and the second value is the 'type' of the value. 'type' is explained in
4. Except for excluding VALUES-form from top level, D-Eval is quite simular to
an usual Eval.

D-Eval>(+ 1 2)

3

;s FIXNUM

D-Eval>'x

X

s SYMBOL

D-Eval>((lambda (x) (cons 'x X)) 1)

X . 1)

;s CONS Fig. 1 D-Eval as a multiple value Eval

3. Internal representation of methods in D-Eval

Methods with the same selector make a method-list. Method-list is stored
in the function cell of a selector, not stored in the global table. Method
discrimination is a procedure to find the most specific method in the given
method-1list.

Each methods bundled in a method-list, has a key for the discrimination.
It is called a class-specifiers. Or more specific case, it is sometime called
type-specifiers. Type is a subset of <class, and is Common Lisp data type.
Class(type)-specifiers is a list of classes (types) of the arguments for a
method.

On DEFMETHing a method, it generates an internal form of the method and
pushes the internal form on the current method-list of the specified selector.
The internal form is from the idea in [ida85].

The following formation happens during defmeth.

— 14]. —

(defmeth selector ((argl classl) (arg2 class2) ... (argn classn))
forml form2 ...)
===
push (METHOD n (classl class2 ... classn)
(lambda (argl arg2 ... argn)
(BLOCK selector forml form2 ...)))
on top of the method-list for the selector,
where n is the number of arguments. ida85 has no ‘n' paprameter. ‘n’ is
introduced for efficiency sake.
Fig. 2 shows an example.
For a generic method, class-specifiers is a list of T, whose length is
the same as that of arguments, and is automatically generated.
For a «classical method, the second or later classes are not specified.
Then default T is automatically inserted.
For a multi method, the complete set of user written class specifiers
makes a class-specifiers for the method.

4. Class-specifiers based Discrimination

4.1 Basic primitives for the discrimination
Method discrimination is based on the relation of the class-specifiers.
The primitives of the discrimination are
TYPE-OF and SUBTYPEP.
TYPE-OF function of Common Lisp takes an object and returns its type as the
value. CLtL definition of the TYPE-OF is so simple that there are several
different interpretations among the Common Lisp implementation. The author
claims the returned value of TYPE-OF should be defined more in the X3J13 spec.
For example, among the most interesting things there are;
(TYPE-OF ()) returns SYMBOL in KCL and VAXLisp both,
and
(TYPE-OF "a string ") returns STRING in KCL, but returns (SIMPLE-STRING 9) in
VAXlisp. From the author's point of view, (TYPE-OF ()) should return NULL,
which is the type for the symbol NIL. And, (TYPE-OF "a string ") should return
SIMPLE-STRING.
SUBTYPEP defines the hierarchical relations among the methods.
If (subtypep x y) is true, then x is more specific than y.
So, SUBTYPE and EQ are the basic predicates for the method discrimination.
TYPE-OF and SUBTYPEP can be extended to have the same semantics for user
defined classes in D-Eval. User defined classes are defined by an extended
defstruct [bob861].
If the name of a structure defined by a defstruct can be viewed as a
type, TYPE-OF also see it, such as;
>(defstruct foo x y 2z)
foo
>(setq x (make-foo0))

>(type-of x)

FOO

>(defmeth func ((x foo)) ...)
func

>(func x)

This causes the invokation of the above method.
Furthermore, if tinclude relation can be understood by SUBTYPEP, it is
possible to discriminate defstruct-ed classes in D-Eval.
>(defstruct (bar (:include foo)) q w)
bar
>(setq y (make-bar))

>(subtypep (type-of y) (type-of x))
t
§t rk
>(defmeth funcl ((x bar)) ...)
funcl
s il
Func is called more specific than funcl at this point.

Taking account the above all discussions, TYPE-OF and SUBTYPEP in D-Eval
is extended.

4.2 Search for the most specific class-specifiers as a kernel of Method search

Candidates for the most specific method which will be picked up and
executed, are obtained through the search on the method-list of the specified
selector. The primary rule is the same-length rule. The methods which have

— 142 —

different length against the type-specifiers of the current message do not
participate the discrimination. For example, to find the most specific method
for (foo a b), (method 3 (x y z) ...) can not be a candidate even though it is
in the method-list of foo.

The body for the method discrimination is defined as follows

(do ((ftype type-specifiers (cdr ftype))
(mtype types (cdr mtype)))
((null ftype) wion w0) ; a method which has 'types' is a candidate

(unless
(or (eq (car ftype) (car mtype)) (subtypep (car ftype) (car mtype)))
(return)) ; exit the loop

)

where type-specifiers is the class-specifiers of the invoked message, types is
the class-specifers of a method stored in the method-list of the selector.
If the loop is finished on ((null ftype)), types 1is checked against the
current candidate, which is a local variable of the outer loop which steps
types in the method-list. After the outer loop is over, the current candidate
contains the most specific method to be executed.

To cope with the multiple super, it should have a class-precedence list.
In the type system of Common Lisp, NULL type and VECTOR type (and related
subtypes of vectors, simple-'s) have a multiple supers. NULL has LIST and
SYMBOL, while VECTOR has ARRAY and SEQUENCE. Bob86 defines LIST advance rule.
ida85 defines sequence advance rule. These rules are stored in the class-
precedence list for selectors. Multiple inheritance with tinclude, makes a
class-precedence list for the class.

4.3 Multiple discrimination

The discrimination algorithm for multi method is based on the left-to-
right principle, which is derived from Bob86. if the left most class specifier
comparison can determine the relation, right part is not checked, like cond.
For example, on comparing two method; a method which have (number symbol) as a
class-specifiers and a method which have (fixnum t), fixnum specifier is more
specific than number specifier, so symbol is not checked against T.

5. D-eval

Fig.3 shows the defintion of d-eval and d-apply. d-evlis is defined in [ida851].
D-Evlis is basically parallel to Evlis.
D-evlis (x) is
(if x (pcons (d-eval (car X)) (d-evlis (cdr x)))
(values nil nil))
where pcons is a primitive to cons each values parallely.
(pcons x y) =

(multiple-value-setq x (x1 x2)),

(multiple-value-setq y (yl y2)),

(values (cons x1 yl) (cons x2 y2))
For example, the values of (d-evlis '(1 'a "string")) are (1 a "string") as the
first value and (fixnum symbol simple-string) as the second value. Fig.4 shows
the examples of the conversation to D-Eval.

The current version of D-Eval has no provision for lexical scoping.

Class definition is done with usual defstruct. So, static properties of Common-
Loops are inherited from the CommonLoops concept.

6. Future work

Among the most interesting area to be explored for CommonLoops, the
author think the design and implementation of the indivisual-method is the key
to next step.

Acknowledgement

This research was partly supported by Grants in aid No.61750344 from the
Ministry of Education, Science and Culture of Japan. The work to write a D-Eval
at Computer Centre of Univiersity of Tokyo (ccut) was partly carried under
the joint research with Prof. Haruhisa Ishida of ccut.

References

[Bob86]1 D.G.Bobrow, K.Kahn, G.Kiczales, et.al. CommonLoops: Merging Common
Lisp and Object-oriented Programming, Proc. OOPSLA'86 ACM Sep. 1986

[ida85] M.Ida, An Interpretation of the CommonLoops specification,

WGSYM 35-3. IPSJ. Dec. 1985

[Steele84] Guy.L.Steele, et.al. Common Lisp: the Language, Digital Press, 1984

— 143 —

suorjruryap A1dde-q ‘1eam-q ¢ ‘814 (
(X032319s 3j0nb, 3sI])

(
(10309135 UOI}DUNJ-]0QUAS)

((((SWwJoy J03D9]13s ¥O0[q, *3SI[)
(s8Je ((X (X Jed)(X dsuod) Ji) (xX) epque[),# Jeddew) epque], }SI[))
sad4) (sadA3 yj38ual) poyjauw, 3sIi[)
(((s8Je ((3 (X JpeD) (X dsuod) JFI) (X) epquwe]),# Jedodew) sadh})) 3}9[)
ysnd)
((I1U (J03D9]9S UOI}DUNF-[OqUAS) 3F33S) ((J03}D3[3S dpunoqy) jou) Ji)
(swJoj 3}saJ® sZUe J03}DI[9S) YjaWISPuU OJIDBWIIP)

((
(((s8xe S1|A2-p) uJ A[dde)
A1dde (ensn ayj} o3 adeds? ¢
asye ¢

sjuaungie aYyj JOo SI91F10ads-2d4) : £
£ u1l sad4Ay sSjuawa[d BYj JFO JAqWnU : (£ YjBud]) dJe SA3Y
Apoq-uj ul poyjouw o1j1dads-j}sow SYj Puly [[Ia
((X (£ (£ y38ua1) 4Apoq-uj poyj}adw-D1y1d3ds-jsou) Ajdde)
(s8Je SI[A8-P) (£ X) purg-anjea-ajdijynu)
‘uayy ‘¢
((Poyjauw, (Apoq-uj Jeed) ba)
((Apog-uj Jed) dsuod) (Apoq-uj dsuod) pue) J1)
(((uF uo13}dUNj-|0quAS) APOG-Uj)) 33[)
(s3Je uy ,s_ = s3Je S_ = UJ °poaajus Ljdde-p,)} jewioy)
(sgae ujy) Ajdde-p unyap)
——=- L1ddB-QqQ ---- ¢!

(C
((((x aped) jo-a2dA}) (X JpeD) S3aN[BA) (d30mb, (X Jed) b3))
possa00ad St JFLON® A[uo : uorjned !
puoo)
(X) WI0F-1e109dS-[BAD-P UNJIP)
—-=-- WJO0J-[B102dS-[BAD-(C ---- ¢!

((((u¥ ,S_ Suod-|eAd-Q JOF wioj [efai[l, J01I3) 1)
((s8ae uj Ljdde) (epquwe], (uj Jed) ba)) pPuod)
(S8J® (SUOD UJ)) SUOD-[BAS-P Yjawjap)
(
(((X TeAd) 3)
((s8Je uj A1jdde-p) (uj dpunoqj))
((X WIoy-JeIdadsS-[jead-p) (uj d-wlioj-[e103ds))
(((X Puedxd0J4DBW) [BA3-P) (UJ UOIJDUNJ-0JIDBW)) puod)
PWeU UOI}DUNJ ® JO ‘SWEU WIOF-[BIDAdS ‘SwWBU 0JDBW ® 9§ PINOYS 31
‘1oquAS ST (WJIOF Jed) JF1 ¢
((x [e1d3ds) aie[d3p)
(S8Je ([O0QWAS UJ)) SUCD-[BAS-P Yjowjap)
9dA} SUOD Y3} IM [BAS-P JOF —---- SUOD-[BAS-Q ---- <

((((1eA 3FOo-2dA}) [BA S8N[EA)
((((X JPD)(X JBD) SUOGD-[BAD-P) 18A)) 331)
((X [el1dads) aie[293p)
((SUGD X)) [BAS-P Y3}awjap)
((((1ea F0-3d43}) [eA S3anjea)
CGiC

((X ,s,. [oquAs punoqun ue [ead® 03 3dwajj}y, J0IId) 1)
((X oniea-joquis) (x dpunoq))
1oquds ui jurod Jxe[ndutls ¢ (X ()} X bay)
(X (x dpJOmAd¥)) PUOD) [®A)) 33])
Suipuiq Jo Suidods [BDIXS] JO JUNOOOER UE dYE)) O0U SI0P UOISIDA STY} : UOTINEBD &¢
((10quAS X)) [BAS-P Y)duwiap)
((1Inu, X sanjea) ((1IDU X)) [BA®-P Y}3WFap)
((I9}0BJIRYD, X SON[BA) ((JID2}D2BIBYD X)) [BAS-P Yjawyap)
((8utajs, X sanjea) ((8uta3s X)) [eAd-P YjouWiap)
(((x §o0-3d4}) X sanjea) ((J2qunu X)) [BAS-P Yj}2WIaP)
———== [BAD-Q ---- $!%¢

(10d, @8eyoed-ur

UOTSIBA 3ST 90°0T°986T ©PI INNABSEN 4q
Ieag SurjeuIWIIOSIQ

uorjexoaul poyjaw adL3 sdooJuowwo) Fo sdjdwexy ¥ -Bld itu

(18A2-P-] 1X2)< [RAR-Q

su9d !

(e 4/ 1 8/@)

T-PoYj}auw-13 [nu

(((£ X suod) (1-Poyjaw-13[nuw, jutad) Jeq jd01q) (£ X) epquey)
S1-poYy3}auU-d1J109ds-3}sow-ay;

(CE€ / 1), €/8) = s8Jde Jeq = uj -paiajud Ajdde-p

(e / T). £/2 Ieq)<1eAd-Q

suod ¢

(® ° 2°1)

9580-D1.19uUa3-3Sow-ayj

(((4 X Suod) (2Sed-D1J3UdZ-3sow-ay}, julad) Jeq ¥}201q) (L X) epquey)
S1-poYy3auw-o13102ds-}Sow-ay;y

(e, ¢°1) = s3Je Jeq = Uy °pPaiajud Ajdde-p

(e, 2°1 IBQ)<I®AE-Q

sSuod ¢

(q e 1)

2-POY3auW-13 [nu

(((£ x suod) (g-poyjdw-1j[nw, juiad) Jeq ¥201q) (£ X) epque])
S1-poOY}aUW-D1J103dsS~)Sow-ay}

((q ®), 1) = s3ae Jeq = uj -pagajud Ljdde-p

((q ®), I Jeq)<ieag-qa

suod ¢

(q * ®)

25BD-D1J2U38-}Sow-3ay}

(((£ X sSuod) (9sed-Dd1aduaF-3sow-ayy, jutad) Jeq Y20[q) (£ X) vpque])
S1-poYyj}aw-d131d2ds~}Souw-ay}

(q, ®,) = s8J® JaBQ = UJ °PaJajud L[dde-p

(q, ®, JaBq)<1eAd-Q

1oquis ¢

Jeq

((£ x suod) (g-poyraw-rj[nuw, jurad) ((3SI] L) (WRUXIF X)) Jeq YjaWFapu) [BAH-(
joquLs ¢
Jeq

((£ X suod) (I-poyjaw-13[nu, jurad) ((SUod L) (Jsqunu X)) Jeq Yjawyapu)<[eAF-Q
10quis ¢
Jeq

((£ % suo0d) (poyjdw-y1edIsse(d, jutuad) (£ (31SI] X)) Jeq Yjawyapu)< [BAH-d
[oqufs ¢
Jeq

((£ X Su0d) (9SBD-D1J2UDF-}SOW-3Y), jUTId) (£ X) JBQ Y3}awFapu)< [eAd-d

d1dwexs uUe : sSUOI}B}USSAIdEI [BUJIJUL JI1DY} PuUR SUOT}IUIFSP POYId ¢ 814
11u
(1BAR-P-1 1X3)< [BAR-Q
suod ¢

(((((4& X SU0D) (3-I2qUNU-00F, jUTIA) 00F }D0[q) (4 X) epque])

(3 Jequnu) gz poyjaw)
((((4s X Su0d) ([0QUAS-WNUXIJ}-00F, juixd) 00F X201q)

(As x) epque])
(10quAS wWNUxX1jy) g poyjau))
(003,) = S8Je UOI}DUNF-]OQUWAS = UF °paIdjue Ajdde-p
(003, uOI}dUNF-]OqUAS)< [BAT-(

joquAs ¢
003

((LSs X Su02)

(10qWAS-WNUXTF-00F,

jutad)) = swI0y (([0QWAS AS) (WNUXIJ X)) = STJIe 00F = 10309]2s
((As X SU0D) ([OQWAS-WNUXIF-00F, 3ULXd)(([OQUAS AS)(WNUXTJ X)) 00F Yjoauyspu)< [eag-q
1oquis ¢
003y

((£ X suod)
(3-I2qunu-003, 3jutad)) = SWJI0J (£ (JBQUNU X)) = SBJE 00 = J0}D2[3S
((£ X SU0D) (3-J2qUNU-00F, julad) (4 (JI2QUNU X)) 00F YjdWFapu)< [eam-d

— 144 —

