BAYZ b7 s 7RELEIERSH/IE

Discriminating Eval

Masayuki Ida
(Aoyama Gakuin University)

The design of Discriminating EVAL (D-Eval) and its first implementation
are described. D-Eval is a CommonLoops interpreter. The extension of
the definitions of type-of and subtypep are proposed. This paper also
tries to give a transparency of the basic mechanism for CommonLoops
execution.

l.Introduction

Discriminating EVAL (D-Eval) is a multiple-value oriented extension of a EVAL
to cope with CommonLoops. In other words, it is an interpreter centered Common-
Loops implementation. This paper describes D-Eval to show a wuser transparent
mechanism for CommonLoops execution, but is slow.

The main purposes of this experimental developement of D-Eval are:
1) to clarify the semantics base of CommonLoops
2) to get a simple CommonLoops for a base of the extensive design
3) to analize the Common Lisp / CommonLoops functionality

CommonLoops [Bob86]1 is an object oriented facility for Common Lisp and
is the Dbase for the comming standard of Common Lisp object oriented facility.
Xerox Parc, which is the original designer of CommonLoops distributes Portable
CommonLoops (PCL) among the Common Lisp community.

PCL is compiler centered and is no longer a simple pilot implementation
for the novices. The primary concern on developing D-Eval at first is to make a
milestone between Common Lisp and CommonLoops.

D-Eval is written in PCL, but can be rewritten in Common Lisp without
PCL. This paper assumes the basic knowledge on CommonLoops [Bob86]1 and Common
Lisp [Steele84].

2. D-Eval as a multiple value Eval

Fig. 1 shows the conversation with D-Eval. Two values are always returned
after evalutaing the form. The first value is the value (first value) of the
form, and the second value is the 'type' of the value. 'type' is explained in
4. Except for excluding VALUES-form from top level, D-Eval is quite simular to
an usual Eval.

D-Eval>(+ 1 2)

3

s FIXNUM

D-Eval>'x

X

s SYMBOL

D-Eval>((lambda (x) (cons 'x X)) 1) .

(X . 1)

;s CONS Fig. 1 D-Eval as a multiple value Eval

3. Internal representation of methods in D-Eval

Methods with the same selector make a method-list. Method-list is stored
in the function cell of a selector, not stored in the global table. Method
discrimination 1is a procedure to find the most specific method in the given
method-list.

Each methods bundled in a method-list, has a key for the discrimination.
It is called a class-specifiers. Or more specific case, it is sometime called
type-specifiers. Type 1is a subset of <class, and is Common Lisp data type.
Class(type)-specifiers is a list of classes (types) of the arguments for a
method.

On DEFMETHing a method, it generates an internal form of the method and
pushes the internal form on the current method-list of the specified selector.
The internal form is from the idea in [ida85].

The following formation happens during defmeth.

— 141 —

(defmeth selector ((argl classl) (arg2 class2)

forml form2)

(argn classn))

===
push (METHOD n (classl class2 classn)
(lambda (argl arg?2 argn)
(BLOCK selector forml form2
on top of the method-list for the selector,

eed))

where n is the number of arguments. ida85 has no ‘n' paprameter. 'n' is
introduced for efficiency sake.

Fig. 2 shows an example.

For a generic method, class-specifiers is a list of T, whose length is

the same as that of arguments, and is automatically generated.

For a classical method, the second or later classes are not specified.
Then default T is automatically inserted.
For a multi method, the complete set of user written class specifiers

makes a class-specifiers for the method.

4. Class~-specifiers based Discrimination
4.1 Basic primitives for the discrimination

Method discrimination is based on the relation
The primitives of the discrimination are

TYPE-OF and SUBTYPEP.
TYPE-OF function of Common Lisp
value. CLtL definition of the TYPE-OF is so
different interpretations among the Common Lisp
claims the returned value of TYPE-OF should be defined more
For example, among the most interesting things there are;
(TYPE-OF ()) returns SYMBOL in XCL and VAXLisp both,

and

0of the class-specifiers.

takes an object and returns its type as the
simple that there are several
implementation. The author

in the X3J13 spec.

(TYPE-OF "a string ") returns STRING in KCL, but returns (SIMPLE-STRING 9) in
VAXlisp. From the author's point of view, (TYPE-OF ()) should return NULL,
which is the type for the symbol NIL. And, (TYPE-OF "a string ") should return

SIMPLE-STRING.
SUBTYPEP defines the hierarchical relations among the methods.
If (subtypep x y) is true, then x is more specific than y.

So, SUBTYPE and EQ are the basic predicates
TYPE-OF and SUBTYPEP can be extended
defined classes in D-Eval. User defined
defstruct [bob861].
If the name of
type, TYPE-OF also see

a structure defined
it, such as;

for the method discrimination.
to have the same semantics for user
classes are defined by an extended
by a defstruct can be viewed

as a

>(defstruct foo x y z)
foo
>(setq x (make-foo))

>(type-0f x)

FOO

>(defmeth func ((x foo))
func

>(funec x)

This causes the invokation of the above method.
Furthermore, if :include relation can be understood by SUBTYPEP,
possible to discriminate defstruct-ed classes in D-Eval.
>{(defstruct (bar (:include foo)) g w)
bar
>{(setq y (make-bar))

it is

>(subtypep (type-of y) (type-of x))
t
yot
>(defmeth funcl ((x bar))
funcl
e
Func is called more specific than funecl at this point.

Taking account the above all discussions, TYPE-OF and SUBTYPEP
is extended.

in D-Eval

4.2 Search for the most specific class-specifiers as a kernel of Method search
Candidates for the most specific method which will be picked up and

executed, are obtained through the search on the method-list of the specified

selector. The primary rule 1is the same-length rule. The methods which have

— 142 —

different length against the type-specifiers of the current message do not
participate the discrimination. For example, to find the most specific method
tor (foo a b), (method 3 (x y 2) ...) can not be a candidate even though it is
in the method-list of foo.
The body for the method discrimination is defined as follows
(do ((ftype type-specifiers (cdr ftype))
(mtype types (cdr mtype)))

((null ftype) e) ; a method which has 'types' is a candidate
(unless
(or (eq (car ftype) (car mtype)) (subtypep (car ftype) (car mtype)))
(return)) ; exit the loop

)

where type-specifiers is the class-specifiers of the invoked message, types is
the class-specifers of a method stored in the method-list of the selector.
If the loop is finished on ({(null ftype)), types is checked against the
current candidate, which 1is a local variable of the outer loop which steps
types in the method-list. After the outer loocp is over, the current candidate
contains the most specific method to be executed.

To cope with the multiple super, it should have a class-precedence list.
In the type system of Common Lisp, NULL type and VECTOR type (and related
subtypes of vectors, simple-'s) have a multiple supers. NULL has LIST and
SYMBOL, while VECTOR has ARRAY and SEQUENCE. Bob86 defines LIST advance rule.
ida85 defines sequence advance rule. These rules are stored in the class-
precedence list for selectors. Multiple inheritance with tinclude, makes a
class-precedence list for the class.

4.3 Multiple discrimination

The discrimination algorithm for multi method is based on the left-to-
right principle, which is derived from Bob86. if the left most class specifier
comparison can determine the relation, right part 1is not checked, like cond.
For example, on comparing two method; a method which have (number symbol) as a
class-specifiers and a method which have (fixnum t), fixnum specifier is more
specific than number specifier, so symbol is not checked againgt T.

5. D-eval

Fig.3 shows the defintion of d-eval and d-apply. d-evlis is defined in [ida85].
D-Evlis is basically parallel to Evlis.
D-evlis (x) is
(if x (pcons (d-eval (car x)) (d-evlis (edr x)))
(values nil nil))
where pcons is a primitive to cons each values parallely.
(pcons x y) =

(multiple-value~-setg x (X1 x2)),

(multiple-value-setq y (yl ¥2)),

(values (cons x1 yl) (cons x2 y2))
For example, the values of (d-evlis '(l 'a "string"”)) are (1 a "string") as the
first value and (fixnum symbol simple-string) as the second value. Fig.4 shows
the examples of the conversation to D-Eval.

The current version of D-Eval has no provision for lexical scoping.

Class definition is done with usual defstruct. So, static properties of Common-
Loops are inherited from the CommonLoops concept.

6. Future work

Among the most interesting area to be explored for CommonLoops, the
author think the design and implementation of the indivisual-method is the key
to next step.

Acknowledgement

This research was partly supported by Grants in aid N0o.61750344 from the
Ministry of Education, Science and Culture of Japan. The work to write a D-Eval
at Computer Centre of Univiersity of Tokyo (ccut) was partly carried under
the joint research with Prof. Haruhisa Ishida of ccut.

References

[Bob86]1 D.G.Bobrow, K.Kahn, G.Kiczales, et.al. CommonLoops: Merging Common
Lisp and Object-oriented Programming, Proc. OOPSLA'S86 ACM Sep. 1986

fida851 M.Ida, An Interpretation of the CommonLoops specification,

WGSYM 35-3. IPSJ. Dec. 1985

[Steele84] Guy.L.Steele, et.al. Common Lisp: the Language, Digital Press, 1984

— 143 —

suotjtuiyap A1dde-q ‘1eAE-q € "F14 ¢
(10309188 9300b, 3ST[)

(
(103103195 UOI1DUNJ-]OQUAS)

((((SWICF 103D3{dS HD01q, %1SI[)
(s8a® ((X (X Jed)(x dsuod) 3F1) (X) epque]),# Jeoddew) epque], 31SI{))
sad4&} (sadhj yjBua) poyjaw, 3IST])
(((SBI® ((3 (X IpBD) (X dSuo0d) J1) (X) epquel),# Jeodew) S$adL})) 3191)
ysnd)
((11U (JO3}DD[dS UOIJDUNJ-]OQUAS) JF}9S) ((JI030918Ss dpuUnogy) jou) 31i)
(swioy jsaay sSue 103D3[9S) Y}aWIIPU OIDBWIIP)

[q¢
(((s8Xe S11A5-P) ujy Ajdde)
A1dde 1ensn ayj 03 2dedsa i
asia ¢!
sjuauwngie 9Yyj Jo SIs1F1oods-adL) IS 5
A u1l saodd] Sjuswois 9yl JO JIqUnU : (£ YjBuU3[) IJJdB SLIY H
‘

Apogq-uj Ul Poyjew O1310ads-3sou dYy pury [[im ¢
{ (X (£ (£ Yyj8usy|) Apog-uj poyisw-dI1Jidads~3soum) Ajdde)
(s2Je S!{Ad-P) (£ X) puIlg-anjea-oidijynu)
‘uayy ‘¢
((Poy3dw, (ApPog-uj Jeed) ba)
({(4Apoq-u3y Jed) dSuod) (Apoq-uj dsuod) pue) F1)
({(U3 UO13IDUNF-10qWAS) APOG-UF)) 39])
(sgJe Uy ,s_ = SBJIe S_ = UJ ‘palajus Ljdde-p, 3} jevwioy)
(sgae ujy) Ajdde-p uniap)
meee A1ddB=Q —=-mm $11Y

(&
((((x aped) jo-ad4Lj) (x JIpeD) Sanjea) (@30mb, (x Jed) ba))
pessad0ad st FLlond L1uo : uorined !¢

puod)
(X) WJI0F-1®109dS-]BAD~P UNJIIP)
---- WIOJ-JEBIDIdS~BAD-Q ---- !¢

((((Uy .S, Sucd-1BAS-(C JO} wWJI0F f[edd[ll, JOdaa) 1)
((s3xe uy AL1dde) (epquej, (uj Ied) ba)) puod)
($8J® (SUOD UJ)) SUOD-1BAS-P Y3}3wjap)
(
(X jeasd))
((sgxe uj A1dde-p) (uj dpunoqjy))
((X WI0F-1B109dS~[RAD~P) (UJ d-WIO0F-]EB1D3dS))
(((X PUBAX90JDBW) [BAS-P) (UF UOI}DUNI-0JDBW)) puood)
SWBU UOTIOUNJ ® JO ‘SWeuU WIOF-{eidads ‘auwru 0JOBW B 3G PINOYS }1 HH
‘1o0quAs ST (WI0y Ied) Fi o+
((x (e100ds) aJaB[D9P)
(s3Je (JOQWAS UJ)) SUCD-{BAl-P Y3}dW}OPpP)
9d4y} SUOD Y3} 1M [BAS-P J0F --—~ SUOD-[BADI-Q —--- ¢4

((((1ea FO-3dL}) 1®vA San[eA)
(({{X JP2) (X JeD) SUOD-IBAS-P) TeA)) 318D)
((x [e100ds) dJv[D0P)
((SUOGD X)) [BAS-P Y}duWjap)
((((1en 30-3dL}) [eA Sanjea)

{((

((X , S, 10QUAS PUNOQUN U® Jead 0} 34wWdI}y, JI0III) A%}
((X ®NIBA-]0QUAS) (x dpunoq))

1oquis ul jutrod xejunl8uis ! (X (3 X bay)

(X (x dpJom4Ad)) PU0d) [BA)) 3D1)
Fuipulq Jo BUidodS [eDIX®] JO JUNOCOOE UB 9YB)} 30U SI0P UDISIIA STy} : uoljned !
({10QWAS X)) [BAS-D U}auiap)
((11nU, X SdNIBA) ({11nu X)) [BAS-P U}auWIop)
((J23DBJIBYD, X SON[BA) ((JID}DBJIBYD X)) [EBADS-DP Y}aWFSP)
((Bulajs, X saniea) ((Bulays X)) 1eas-p yjauwiep)
(((X 30-3dA}) X SSn[eA) ((J2QquWnU X)) [BAD-P Y)}2WIap)
———— [BAD=(—=--- i3

(1od, 98eydoed-ur)
UOISIdA 3ST 90°01° 9861 BP] INRAWSEN 4q tee
{eag FuijruIwWiIOSI(g tol

uoljeyoaut poyjaw sdLy sdooJuomwon jo sajdwexy ¥ -F14 ftu

(1®AB-p-3 IX3)< [BAH-C

suod ¢

e/ 1 ¢/

T-pPoy3duw-13 [nu

(((£ X suod) (I-POYyrdW-1jinu, jutad) Jeq y¥d01q) (L X) epque])
S1-poOY3}aW-21F100ds-]s0W-3Y3

((E€ / 1), €/T) = s3J® Jeq = U} °"paiojus Lijdde-p

(g / 1), g/ Jeq)<ieag-q

sued !

(® * 2°1)

8S®¥O-01J0UdT -3 S0W-3Y]

({(£ X SUOD) (9SBD-D1J2U3T-}sow-ayj, julad) Jeq ¥O01q) (L X) epquel)
S1-poyjau-o1Jy10ads-)sou-ayy

(e, 1) = sPIe Jeq = U °PoId}uUd A[dde-p

(e, 2°1 18q){1®Ald-Q

suod !¢

(¢ e 1)

¢-poyisu-131nu

(((4 X Su0d) (g~Poyjrdw-1jfnuw, jutad) Jeq ¥O00[q) (£ X) epquer)
S1-poOY}aUW-013109dS~}S0W-3Y)

((q ®B), [) = s8ae Jeq = uj °-paudjud L[dde-p

((q ®), 1 Jeq)<ieag-q

suo0o ¢

q - ®)

95BD-D1.J2U38~]SOUW-3Y}

(((£ X suod) (aseo-dlisuad-jsow-ayj, jutad) Jeq ¥%d0iq) (4 X) epquel)
S1~-pOy}dW-D1J1d0ads-jsou~ayy

(9, ®,) = S2JXe Jaeq = Uj -paiajus Ljdde~-p

(q, ®, Jeq)<[eAd-~-Q

1o0quLs ¢

Jeq

((£ X su0ODd) (Z-POY3IdW-T3INW, julad) ((3S!] L) (WNUXTJ X)) Jeq Y}duIspu)< [eAd-¢
toquis ¢
J8Q

((£ X Su0d) ([~-poyrauw~ijfnu, uUTId) ((SU0D L) (JBqUNU X)) Jeg Ylawjapu){1eam-q
joquis ¢
Jeq

((4 X Suod) (PoY3aw~[edisseld, juldd) (4 (ISI] X)) Jeq Yidwisapu)<ieag-q
1oquis !
Jeq

((£ X Su0D) (9SED-D1J3UdFT-1SOW-3Y3}, jutrad) (4 X) Jeq Y3auwyoapu)< 1eag-(

91dwexs Ue : SUOI}BIUISBIASI [PUJS}UI JIOY] PUR SUOT|IUTIAP POYISH 7 -F1d
11u
(1ead-P-11X3)[BAE~-Q
suod ¢

(((((L X Sucd) (}-I2qUWNuU-00y, jurad) 00F ¥DO[q) (4 X) epque])

(3 J9guwnu) z poyjlauw)
((((AS X SU0D) (]0QUAS-WNUXIF-00F, jutid) 60F X20[Qq)

(4s X) epgue])

(10QWAS WnUX1F) g PoOYjauw))

(003,) = S3JIe UDI}DURI-[OQUAS = U] -paJdajus Ajdde-p
(00}, UOT3OUNI-fOoquUAS){IBAT-C
10quis ¢
ooy
((AS X suo0d)
(10qUAS~WOUXTI~00F,
1utad)) = swa0j ((10quAS £S) (WAUXIF X)) = STJIe 00F = J0}09{as
((£S X SUOD) (]DQUAS-WNUX1F-00F, 3ULId) (([0QUAS AS)(WNUXIF X)) 00F Y}SWFIPU)L [CAF~(
1oquis ¢
0o¥

((L % suo2)
(}-~Jd3qunu-003, julad)) = swIoy (£ (JISQUNU X)) = STJIB 007 = J0}D2([3S
((4 X SU0D) (31-Joqunu-o00F, 3uUIXd) (4 (J9QWNU X)) 00F YIaWIaPU)< [BAH-(

— 144 —

